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Abstract. Structural operational semantics is one of
the most popular semantic methods in the community
of software engineers. It describes program behavior
in the form of change of states caused by execution of
elementary steps. This feature predestinates Structural
operational semantics for implementation of program-
ming languages and also for verification purposes. In
our paper we present a new approach to Structural
operational semantics: behavior of programs, i.e.
state changes we model in category of states. Category
morphisms express elementary execution steps and
program execution is an oriented path in category,
i.e. composition of morphisms. Our approach is
able to accentuate dynamics of Structural operational
semantics, it is intuitively typed. That’s why such
model is suitable not only as a model for Structural
operational semantics but also for educating young
software engineers.
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1 Introduction
Structural operational semantics is a simple and direct
method for describing meaning of programs written
in some programming language. It requires minimal
knowledge of mathematics and it is easily understand-
able by practical programmers [14].

There are several semantic methods used simultane-
ously with structural operational semantics. Denota-
tional semantics formulated by Scott Strachey in [20]
and later by David Schmidt [15] requires quite deep
knowledge of mathematics. The meaning of programs
is expressed by functions from syntactical domains to
semantic domains which can be non-trivial mathemat-
ical structures, e.g. lattices. Therefore we cannot be
surprised that structural operational semantics gained
much more attention in community of programmers
than denotational semantics [8].

Natural semantics formulated by Gilles Kahn [9] is
often called semantics of big steps. The author fol-
lowed two aims:

- to simplify semantic description for software en-

gineers instead of difficult mathematical notations
of currying and continuation functions in denota-
tional semantics; and

- to abstract from elementary steps of execution in
structural operational semantics.

Natural semantics describes a change of states
caused by execution whole statements [16]. Natural
semantics can be useful for specification languages or
in program verification [3].

There are known several other semantic methods
less or more used in various areas of programming.
Axiomatic semantics [6] is based on satisfying post-
conditions after executing of statements from truth pre-
conditions before this action. Algebraic semantics
[5, 23] specifies abstract data types and it models them
by heterogeneous algebras. Game semantics [1, 4] de-
scribes meaning of programs in the form of game trees
and game arenas.

The author of structural operational semantics is
Gordon Plotkin. In his work [12] he formulated this se-
mantic method as a formal tool for describing detailed
execution of programs by transition relations between
configurations before and after performing an elemen-
tary step of every operation. The main ideas about his
approach and his motivation is explained in [13].

Structural operational semantics generates labeled
transition system consisting of transition rules describ-
ing modification of states [22]. A state is a basic no-
tion of structural operational semantics and it can be
considered as some abstraction of computer memory.
Every transition rule has its premise or premises and a
conclusion. Premises and a conclusion are transitions.
The rules can be decorated by additional conditions in
the form of predicates. A rules has a form

premise1, . . . , premisen, condition

conclusion

If all premises and (if exist) all conditions are satisfied,
then a conclusion is valid [2].

By [22], structural operational semantics is essen-
tially a description of program behavior. Because it
provides a detailed description of program performing,
its main application area is in implementation of pro-
gramming [11]. By the years, this semantic method
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became very popular among software engineers and it
has many extensions for various purposes.

One of the advantages of structural operational se-
mantics is the notion of environment expressing con-
text dependencies. Context dependencies are the re-
lationships required between the declarations and us-
age of variables in nested blocks with respect to scope
rules.

In the last decades many new results were published
about structural operational semantics. Turi [21] in his
PhD. thesis formulated coalgebraic categorical model
of this method and he showed its duality with deno-
tational approach. New approaches to operational se-
mantics were published in [17, 18]. Among new re-
search results in the area of this semantic methods
belongs also formulation of modular structural opera-
tional semantics published in [7, 10, 19].

2 The language Jane

In our approach to define categorical operational se-
mantics we use a sample imperative language Jane.
It consists of traditional syntactic constructions of
imperative languages, namely arithmetic and Boolean
expressions, variable declarations and statements. For
defining formal syntax of Jane we introduce the
following syntactic domains:

n ∈ Num - digit strings;
x ∈ Var - variable names;
e ∈ Expr - arithmetic expressions;
b ∈ Bexpr - Boolean expressions;
S ∈ Statm - statements;
D ∈ Decl - sequences of variable declarations.

The elements n ∈ Num have no internal structure
from semantic point of view. Similarly, x ∈ Var are
only variable names without internal structure signifi-
cant for defining semantics.

The syntactic domain Expr consists of all well-
formed arithmetic expressions created by the following
production rule:

e ::= n | x | e + e | e− e | e ∗ e.

A Boolean expression from Bexpr can be of the
following structure:

b ::= false | true | e = e | e ≤ e | ¬b | b ∧ b.

The variables used in programs have to be declared.
We consider D ∈ Decl as a sequence of declarations:

D ::= var x;D | ε

where ε is the empty sequence. We assume that vari-
ables are implicitly of type integer. This restriction en-
ables us to focus on main ideas of our approach.

We consider five Dijkstra’s statements as statemets
in language S ∈ Statm: assignment, empty state-
ment, sequence of statements, conditional statement

and cycle statement together with block statement and
input statement:

S ::=
x := e | skip | S;S | if b then S else S |
while b do S | begin D;S end | input x.

3 Specification of states
A state is a basic concept of structural operational se-
mantics. It can be considered as some abstraction of
computer memory. Every variable occurring in a pro-
gram has to be allocated, i.e. some memory cell is re-
served and named within its declaration. We can as-
sign and modify a value of allocated variable inducing
change of state. Because of block structure of Jane,
we have to consider also a level of block nesting.

According to previous ideas we formulate the sig-
nature ΣState for states. We define abstract data type
State using types V ar and V alue of variables and val-
ues. A signature ΣState consists of types and operation
specifications on the type State:

ΣState =
types : State, V ar, V alue
opns : init :→ State

alloc : var, State→ State
get : V ar, State→ V alue
del : State→ State

The operation specifications have the following intu-
itive meaning:

- init creates a new state, the initial state of a pro-
gram;

- alloc reserves a new memory cell for a variable in
a given state (and nesting level);

- get returns a variable value in an actual state;

- del deallocates (releases) all variables together
with their values on a given nesting level.

The signature ΣState serves as a basis for constructing
our model of Jane as the category of states.

4 Operational semantics
We construct operational model of Jane as the cate-
gory CState of states. First, we assign to states their
representation. The representation of the elements of
V alue we consider integer numbers together with the
undefined value ⊥:

V alue = Z ∪ {⊥} .

Our representation of type State has to express vari-
able, its value with respect to actual nesting level. Let
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Level be a finite set of nesting levels denoted by natu-
ral numbers l:

l ∈ Level, Level = N.

Now, we can represent every state s ∈ State as a func-
tion

s : V ar × Level ⇀ V alue.

This function is partially defined, because a declaration
does not assign a value to declared variable. Every state
s expresses one moment of program execution. Our
definition of states can be considered as a table with
possibly unfilled cells denoted by ⊥.

Every state s can be expressed as a sequence:

s = 〈((x, 1) , v1) , . . . , ((z, l) , vn)〉

of ordered triples

((x, l) , v) ,

where (x, l) is declared variable x on nesting level l
with actual (possibly undefined) value v. Another rep-
resentation of state is table which contains names of
variables, the level of their declaration and actual value
stored in the variable:

variable level value

x 1 v1

z l vn

...

The last representation is as a graph of function:

graph(s) = {((x, 1), v1), . . . , ((z, l), vn)}

Now, we can define the representation of operations
from ΣState as follows. The operation JinitK defined
by

JinitK = s0 = 〈((⊥, 1) ,⊥)〉
creates the initial state of a program, with no declared
variable. Its role is to set nesting level to value 1:

variable level value

⊥ 1 ⊥

The operation JallocK is defined by

JallocK(x, s) = s ◦ ((x, l) ,⊥) ,

where ’◦’ is concatenation of sequences. This opera-
tion sets actual nesting level to declared variable. Be-
cause of undefined value of declared variable, the op-
eration JallocK does not change the state:

variable level value

x l ⊥
... ... ...

The operation JgetK returns a value of a variable de-
clared on the highest nesting level and can be defined
by

JgetK(x, 〈. . . , ((x, li) , vj) , . . . , ((x, lk) , vk′) , . . .〉) = vl,

where li < lk.
The operation JdelK deallocates (forgets) all variables
declared on the highest nesting level li:

JdelK(s ◦ 〈((xi, lj) , vk) , . . . , ((xn, lj) , vm)〉) = s.

variable level value

x li v

... ... ...

xi lj vk
... ... ...

xn lj vm

We construct the category CState as a category of
states defined above. Category objects are states s with
special object s⊥ = ((⊥,⊥) ,⊥) expressing an unde-
fined state.

Category morphisms express change of states caused
by execution of statements and they will be defined
later.

5 Arithmetic and Boolean expres-
sions

Arithmetic and Boolean expressions serve for comput-
ing values of two implicit types of the language Jane.
In defining semantics of both types of expressions, an
actual state is used but not changed in the process of
evaluation. The following tables (Table 1 and Table 2)
define semantic functions together with corresponding
semantic operations for arithmetic and Boolean expres-
sions.

JeK : State→ Value.

[[n]]s = n

[[x]]s = [[get]](x, s)

[[e1 + e2]] = [[e1]]s⊕ [[e2]]s

[[e1 − e2]] = [[e1]]s	 [[e2]]s

[[e1 ∗ e2]] = [[e1]]s⊗ [[e2]]s

Table 1: Semantics of arithmetic expressions

JbK : State→ Bool.
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[[true]]s = true

[[false]]s = false

[[e1 = e2]]s =

{
true if [[e1]]s=[[e2]]s
false otherwise

[[e1 ≤ e2]]s =

{
true if [[e1]]s≤[[e2]]s
false otherwise

[[¬b]]s =

{
true if [[¬b]]s=false
false otherwise

[[b1 ∧ b2]]s =

{
true if [[b1]]s≤[[b2]]s=true
false otherwise

Table 2: Semantics of Boolean expressions

Evaluation of expressions has no effect on states, i.e.
objects of our category CState. Value and Bool are
semantic domains for integers and Booleans, resp.

Value = Z, Bool = B,

where B is the set containing Boolean values
{true, false}.

6 Declarations
Every variable occurring in a Jane program has to
be declared. Declarations are elaborated, i.e. a mem-
ory cell is allocated and named by a declared variable.
Therefore elaboration of a declaration

var x

is represented as an endomorphism:

[[ ]]D : s→ s

for a given state s and defined by

[[var x]]s = alloc(x, s).

A sequence of declarations is represented as a compo-
sition of corresponding endomorphisms:

[[var x;D]]s = [[D]] ◦ alloc(x, s).

If we consider a state as a table, a declaration create
new entry (raw) for declared variable with the actual
level of nesting and undefined value

((x, l) ,⊥) .

7 Statements
Statements are the most important constructions of pro-
cedural/imperative languages. They execute program

actions, i.e. they get values from the actual state and
provide new values. A state is changed if a value of
allocated variable is modified. This change of state we
model in category CState by morphisms between ob-
jects:

JSK : State ⇀ State. (1)

The morphism (1) is a partial because execution of
some statements does not need to provide defined state,
e.g. infinite cycle.

Statements are executed in sequence, as they are
written in program text. In this contribution we do not
consider the statements breaking sequential execution,
e.g. goto statement or exceptions.

Assignment statement x := e stores a value of arith-
metic expression e in a state s in a memory cell allo-
cated for variable x on maximal (highest) level of nest-
ing. This condition ensures that local variable visible
in given scope is used.
The semantics is as follows

[[x := e]]s =

{
s [[[e]]s/x] for ((x,max l) , v) ∈ s;
⊥ otherwise.

and it is expressed by a morphism in the Fig. 1.

s s′

Jx := eK

Figure 1: Morphism for assignment

The notation
s [[[e]]s/x]

describes that initial state s is modified for variable
x by a value [[e]]s of arithmetic expression in the state s.

The empty statement skip does nothing, i.e. it does
not change state. Clearly, it is identity on state s (Fig.
2).

[[skip]] = ids
[[skip]]s = s

s

JskipK

Figure 2: Morphism for empty statement

A sequence of statements is executed one by one and
can be modeled as composition of morphisms (Fig 3)

[[S1;S2]] = [[S2]] ◦ [[S1]]
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s
s′ s′′

JS1K JS2K

JS1;S2K

Figure 3: Composition of morphisms

and defined for a state s by

[[S1;S2]]s = [[S2]] ([[S1]]) s.

Because the body of a program is a sequence of
statements, program semantics is a path in category
CState.

Conditional statement

if b then S1 else S2

causes branching of execution depending on a value of
Boolean expression (Fig. 2):

[[if b then S1 else S2]]s =

{
[[S1]]s if [[b]]s = true;
[[S2]]s otherwise.

s

s′

s′′

JS1K

JS2K

Figure 4: Conditional branching

A cycle
while b do S

also depends on a value of Boolean expression b. If
b is true in initial state, the body S of a cycle is exe-
cuted, then again b is evaluated in modified state. If a
value b is not valid, execution of cycle statement is fin-
ished. Cycle statement is semantically equivalent with
the following conditional statement:

[[while b do S]]s =
[[if b then (S; while b do S) else skip]]s

Input statement input x serves for reading input
value that is stored in given variable x. Because the
value of variable is changed, execution of input state-
ment causes modification of state. If a variable x is not
declared, the final state is undefined:

[[input x]]s =

{
s [v/x] for ((x,max l) , v′) ∈ s;
⊥ otherwise.

The notation

s [v/x]

describes a new state where the value v′ of local vari-
able x is modified by an input value v.

Programs in Jane can have nested blocks together
with declarations of local variables. Execution of block
statement

begin D;S end

follows in steps:

- nesting level l is incremented. We represent this
step by fictive entry in state table

((begin, l + 1) ,⊥)

i.e. endomorphism s→ s;

- local declarations are elaborated on new nesting
level l + 1;

- the body S of block is executed;

- locally declared variables are forgotten at the end
of block. We model this situation using operation
[[del]].

The semantics of block statement is the following com-
position of morphisms:

[[begin D;S end]]s =
([[del]] ◦ ([[S]] ◦ [[D]])(s ◦ ((begin, l + 1) ,⊥)))

It follows from the construction of category of states
fulfilling of its base properties:

- each object has identity morphism defined;

- for any two composable morphisms there exists
such a morphism which is their composition.

8 An example

We show our approach on a simple example. We con-
sider here trivial a program written in Jane with one
nested block with local variables which are modified
inside the block:

var x; var y;
x := 1;
y := 10;
begin
var x;
x := 5;
y := y + x;

end;
y := y − x;

Central European Conference on Information and Intelligent Systems____________________________________________________________________________________________________Page 251

 
Varaždin, Croatia
____________________________________________________________________________________________________ 

Faculty of Organization and Informatics
 

September 23-25, 2015



s0
⊥ 1 ⊥

Figure 5: Initial state

Figure 6: Initial state in category

The initial state has only starting information in the
state table (Fig. 5) and we start to construct a path in
category of states with an initial state in category (Fig.
6).

When entering the local block, we must to note this
information into state table with fictive entry. Then ac-
tual nesting level is incremented to the new value which
means that all variables declared in this local block
have nesting level actualized. For example, the state
table after local variable declaration is depicted in the
Fig. 7.

s2
x 1 1

y 1 10

begin 2 ⊥
x 2 ⊥

Figure 7: State table with enetring local block

The category contains a path which is depicted in the
Fig. 8.

Figure 8: Path with entering the local block

When we are at the end of the block, we simply for-
get all local variables with the actual level of nesting
(Fig. 9) which leads to resuming values of variables

from previous level.

s5
x 1 1

y 1 15

begin 2 ⊥
x 2 5

Figure 9: End of the local block execution

Actual path in category is depicted in the Fig. 10.

Figure 10: End of the local block

Finally, the last morphism completes the path in cat-
egory (Fig. 11) and state table (Fig. 12).

Figure 11: Complete path representing the whole pro-
gram

s6
x 1 1

y 1 14

Figure 12: State table after the program finishes

The semantics of the program is expressed as a path in
category of states from initial state into final (the last)
state s6.

9 Conclusion
We presented a new approach to operational semantics
by categories. We constructed the category of states
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CState where states of memory are objects and state
changes (computations) are morphisms. The seman-
tics of program is defined as composition of morphisms
from initial state into final state and is represented in
category as a path of all morphisms that represent each
program step. Categories have beautiful illustrative
power when expressing some relations graphically, our
approach is very good understandable for students and
also for software engineers. We would like to focus
on types of data structures, exceptions and jumps and
procedures. We assume that computation by procedure
shall be defined in separate category. Each category
that represent computation of procedure will be defined
as object of total category for procedure environments.
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