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Abstract. We used the Random Forest and Decision 
Trees algorithms to develop predictive learning 
analytics models for problem- and project-based 
learning (PBL). Predictive modeling was done on the 
data collected from two university courses, with a total 
sample of 309 students. Different phases of PBL were 
analyzed, with problem-solving found to be more 
predictable than problem-posing or peer-assessment. 
Students were divided into three classes based on their 
performance in PBL, and the RF-based models were 
found to be the most efficient in predicting the lower 
performing students. The DT-based models were 
generally found to be less efficient, but more 
interpretable. 
 
Keywords. predictive learning analytics, random 
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1 Introduction 

Today, in the age of education highly supported and 
enhanced by technologies, higher education 
institutions (HEIs) have access to more ample and 
more diverse student data than ever before (Prinsloo, 
2020). Exploiting this opportunity, predictive learning 
analytics (LA) can contribute to the quality of 
education by using historical data to make predictions 
and inferences about possible future outcomes 
(Susnjak et al., 2022).  

Problem- and project-based learning (PBL), in 
which students work to solve real-life problems, have 
been recognized as innovative approaches that foster 
critical thinking, creativity, autonomy, collaboration 
and interdisciplinarity (Brassler & Dettmers, 2017; 
Dole et al., 2015; Savery, 2006). Nevertheless, 
educators are still challenged by course structuring, 
student progress monitoring, and giving guidance. LA 
provides a promising new perspective in terms of 
course design and monitoring. (Wang et al., 2023) 

Some studies have been conducted at the 
intersection of PBL and LA. For example, a study 
investigating the key factors predicting online PBL 
performance (Wang et al., 2023) identified self-
regulation, posted messages, message words, and peer-
learning engagement as predictors. However, the 
overall body of research combining PBL and LA to 
support the development of data-driven student-
centered courses, and especially linking LA with 
particular steps of PBL, is still relatively scarce (Wang 
et al., 2023). 

The aim of this study was to investigate the 
predictive power of parts of the assessment program on 
PBL performance, and to analyze the efficiency of 
predictive models based on two prediction algorithms 
(Random Forest and Decision Trees). 

2 Theoretical Background 

2.1 Predictive Learning Analytics 
An important area in LA refers to forecasting academic 
outcomes based on patterns in past and present data. 
This predictive LA strongly relies on machine learning 
and deep learning algorithms, learning from historic 
datasets and using various kinds of student data to 
make predictions. (Sghir et al., 2023; Susnjak et al., 
2022) Predictive LA can provide important support to 
achieving LOs, informing learning design, identifying 
at-risk students, as well as increasing students’ 
satisfaction (Sghir et al., 2023). Predictive modeling, 
as an important practice in LA, is done with the use of 
several algorithms: in particular, the most often used 
Artificial Neural Networks are followed by the 
Random Forest (RF) and Gradient Boosting 
algorithms, and these algorithms were also found to 
have the highest prediction accuracy compared to other 
algorithms (Sghir et al., 2023). Particularly, an 
educational research study (Kabathova & Drlik, 2021) 
found that the RF classifier was associated with the 



best accuracy and precision compared to Logistic 
Regression, Support Vector Machine, Decision Tree 
(DT), Neural Networks and Naïve Bayes. The DT 
algorithm was among the algorithms that came out 
second best.  

Some research has been conducted to identify the 
most important predictors. Importantly, it has been 
found that cognitive data (entry test and quiz scores) 
present the best predictors, as opposed to basic LMS 
data (Tempelaar et al., 2015). Research has also shown 
that formative assessment is an important predictor of 
students’ performance (Bulut et al., 2023; Divjak et al., 
2024). 

2.2 Problem- and Project-Based Learning 
Problem- and project-based learning are student-
centered, constructivist approaches to teaching and 
learning (Dole et al., 2015). Both are based on activities 
done by students collaboratively, independently, in 
order to achieve a mutual goal (Brassler & Dettmers, 
2017; Savery, 2006). Problem-solving is usually done 
in teams, and this peer-learning is followed by peer-
assessment. While in problem-based learning students 
investigate to solve ill-structured problems, not 
necessarily leading to a concrete artifact (Savery, 
2006), in project-based learning, students’ problem-
solving is oriented towards the production of a final 
artifact (Dole et al., 2015). Moreover, while guidance 
is important in both approaches, in project-based 
learning, teachers provide more direct instructions to 
students on how to produce the final artifact, but still 
fostering self-regulated learning (Savery, 2006).  In the 
problem-solving context, we distinguish between 
problem-posing and problem-solving, with the former 
found to be more demanding for students, as it is 
something they are less exposed to (Divjak, 2015). 
Problem-posing generally refers to students generating 
new problems, which can be based on given situations 
or existing problems (Cai & Rott, 2024).  

For the aim of this paper, the two approaches will 
be referred to in conjunction (using the abbreviation 
“PBL”), as the aspects relevant for this research are 
common to both. 

3 Methodology 

The focus of this study has been on two research 
questions: 
1. In these PBL case studies, how do different 

prediction methods compare in terms efficiency 
and explainability? 

2. What elements of an assessment program are the 
best predictors of PBL performance? 

3.1 Study Setting and Data Collection 
The study was conducted at the University of Zagreb, 
Faculty of Organization and Informatics, a HEI 

offering study programs in ICT, and included data from 
two courses, collected in the academic year 2022/2023. 
The courses were chosen so as to represent two 
different levels of study (undergraduate and graduate) 
and two different subject areas (ICT and Mathematics), 
include a considerable PBL experience for students, as 
well as to have a number of students large enough to 
enable meaningful machine learning data analysis. 

At the undergraduate level, the study included the 
Informatics Services Management (ISM) course 
(second year). The course has a student workload of 4 
ECTS credits. The assessment program includes 
formative assessment (assignments done in laboratory 
exercises) and summative assessment (two periodical 
exams, a PBL assignment in the middle of the semester 
and at the end). In the PBL assignment, students work 
in groups on projects given by the course teacher, based 
on client requirements, focused on developing a 
prototype of an IT service. In the first phase, students 
have the task to determine the characteristics of end-
users and make a service proposal in the form of a 
wireframe (a type of problem-posing). The first version 
of the student solution is presented to the teacher in the 
middle of the semester, in the form of a business 
meeting, in which teachers have the role of potential 
clients. In the second part of the semester students 
work on the solution (service prototype as a type of 
problem-solving) according to the feedback received in 
the first business meeting. The PBL assignment 
contributes 50% to the final grade. The sample 
included in this study consisted of 191 students. 

At the graduate level, the study included the 
Discrete Mathematics with Graph Theory (DMGT) 
course (first year). The course has a student workload 
of 6 ECTS credits. The course’s assessment program 
comprises formative assessment (weekly quizzes) and 
summative assessment (two periodical exams, a PBL 
assignment). The extensive PBL assignment includes 
five weeks of independent work done by students in 
teams, and has three stages. In the first stage, students 
find and describe a real-world situation in which graph 
theory and discrete mathematics can be applied to 
solve a problem, and submit a project description with 
the characteristics of solutions (problem-posing). 
Feedback and grades are provided by course teachers, 
and these project proposals are distributed to other 
teams to solve. In the second stage, students work on 
projects, solving the problems posed by other teams 
(problem-solving). Finally, each team assesses the 
solutions to their project proposals (peer-assessment), 
together with the course teachers. The final grades 
consist of aggregated students’ peer-assessment grades 
and teachers’ grades (which have a higher weight). 
Additionally, students also receive a grade for the 
quality of work on peer-assessment, based on its 
consistency with the teacher’s grade. The PBL 
assignment contributes 40% to the final grade. The 
sample included in this study consisted of 118 students. 



For both courses, we collected assessment data 
from the Moodle LMS. The data were anonymized and 
students’ identities protected.  

3.2 Data Analysis 
For each of the courses, the assessment data were 
randomly distributed, so that 75% of the data were used 
for training, and 25% were used for testing.  

The data were analyzed using two supervised 
machine learning algorithms used for classification and 
regression purposes: Random Forest (RF) and 
Decision Trees (DTs). The analyses were performed in 
R, using the tidymodels package with rpart engine. 

DTs are a simple method, but successful in 
predicting and explaining relationships (Rokach & 
Maimon, 2014). A DT is a mathematical graph, starting 
with a single node, with edges branching into next-
level nodes based on the probability of a certain 
outcome. Each node refers to a possible decision, while 
edges represent their consequences. It consists of 
repeated tests on the input variable, with the results of 
each test determining the next test, until the result of 
the function is certain. DTs can be prone to overfitting 
if the number of nodes is high relative to the quantity 
of data. A higher number of nodes decreases the 
training error, but increases the generalization error. 
(Rokach & Maimon, 2014) 

RF is an ensemble method, more complex, based 
on multiple DTs, combining their results for final 
classification. While building DTs, the RF randomly 
selects various subsets of attributes. RF presents “a 
combination of tree predictors such that each tree 
depends on the values of a random vector sampled 
independently and with the same distribution for all 
trees in the forest” (Breiman, 2001). Due to the Law of 
Large Numbers, with RFs, there is no problem of 
overfitting. Considering all this, RFs have been found 
effective in making predictions. (Breiman, 2001; Kursa 
& Rudnicki, 2010) Another advantage of RFs is that 
they offer the possibility of variable importance 
measures (VIMs), used for identification of relevant 
features or selection of variables, including impurity 
and permutation importance (Nembrini et al., 2018). 
Regardless of the advantages, the random nature of 
RFs means they are “not always intuitive and 
comprehensible”, as different trees can lead to 
inconsistency in interpretations. In this sense, the 
advantage of single DTs is their interpretability. 
(Rokach & Maimon, 2014) 

We started the analysis with cross-validation to 
choose the optimal combination of hyperparameters. 
For RF, we tested 500 randomly chosen combinations 
of hyperparameters (mtry, min_n, trees), and for DTs, 
we tested 5000 randomly chosen combinations of 
hyperparameters (tree_depth, min_n, cost_complexity) 
with Latin hypercube sampling. Then, we performed 
RF and made single DTs on the training datasets, and 
tested the efficiency of each algorithm on the testing 
datasets.  

For each of the two courses, we built an RF-based 
and a DT-based model for each phase of the PBL 
assignment. We tested the efficiency of each of the 
models based on several metrics, and most importantly 
using the area under the Receiver Operating 
Characteristics curve (ROC_AUC), presenting a plot 
of the true positive vs. the false positive rate. Although 
the ROC curve is normally used for assessing the 
performance of binary classification models, its use 
also extends to multi-class classification (Hand & Till, 
2001; Mandrekar, 2010).  

In each model, students were divided into three 
classes, based on their assessment results (0 - 33%, 33 
- 67%, 67 - 100% of points obtained in the respective 
part of the PBL assignment).  

We analyzed the confusion matrices for each of the 
models to assess the models’ performance. 

Furthermore, we analyzed the importance of 
predictors, based on three VIMs: the Gini index, 
permutations and the Boruta extension (Kursa & 
Rudnicki, 2010). 

4 Results 

4.1 Efficiency of the Models 
The efficiency of the models was tested, most 
importantly, based on the ROC_AUC value. The 
values for both courses and both algorithms are 
presented in tables 1 and 2. 

If we look at the training datasets, the RF results 
indicate a higher discriminatory power than the DT 
results. Namely, for both courses, the ROC_AUC 
values in the RF-based models are generally (around 
or) above 0.9, which is considered outstanding 
(Hosmer & Lemeshow, 2000). Looking at the DT-
based models, the performance is somewhat lower, 
with ROC_AUC values ranging from (around) 0.7, 
which is considered acceptable (Hosmer & Lemeshow, 
2000), to (above) 0.9. Generally, the models’ 
performance on the training datasets indicates that 
patterns have been learnt well, but with the RF-based 
models outperforming the DT-based models. 

If we consider the testing datasets, the models 
turned out to be less efficient, with ROC_AUC values 
often below 0.7 (less than acceptable). However, 
looking at the models for problem-solving in both 
DMGT and ISM, the ROC_AUC values around or 
above 0.8 indicate excellent efficiency (Hosmer & 
Lemeshow, 2000) of both RF-based and DT-based 
models, with the RF-based again performing slightly 
better. In the case of peer-assessment, this applies only 
to the DT-based DMGT course model.  

The confusion matrices were analyzed for all the 
models, and here we present those related to problem-
solving in DMGT (Fig. 1) and ISM (Fig. 2), RF-based 
models, as the most efficient ones. 
 
 



The DMGT course confusion matrix in Figure 1 
suggests that the model is the most efficient in 
classifying class 1 students (lower-performing), with 9 
students classified correctly, although additional 3 
class 1 students were misclassified as class 3. There 
was some more confusion when it came to the 
neighboring classes 2 and 3, as 7 students were 
classified correctly in each of the two classes, but 4 
were misclassified as belonging to the neighboring 
class.  

Figure 1. DMGT course: RF confusion matrix 
(problem-solving) 

The ISM confusion matrix in Figure 2 shows the 
model performed best in predicting the (lower-
performing) class 1, with 13 students classified 
correctly, but it also misclassified 3 class 1 students as 
the neighboring class 2. Similarly, it correctly 
classified 13 students as class 2, although it also 
misclassified 4 respective students as class 1. The 

model was the least successful with class 3, with 10 
students classified correctly, but additional 5 students 
misclassified as either class 1 or 2.  

Figure 2. ISM course: RF confusion matrix (problem-
solving) 

4.2 Predictors 
The importance of predictors was analyzed for all the 
models (phases of PBL). Here we present those related 
to problem-solving in DMGT and ISM, as the most 
efficient models. 

DMGT. In the RF-based model, results in problem-
posing turned out to be the most important predictor of 
the results in problem-solving, according to all the 
three VIMs (Gini, permutations, Boruta). Problem-
posing was followed (from the most important) by: 

Table 1. DMGT course: ROC_AUC values 

Random Forest Decision Trees 

Problem-posing Problem-solving Peer-assessment Problem-posing Problem-solving Peer-assessment 

Train Test Train Test Train Test Train Test Train Test Train Test 

0.850 0.612 0.955 0.826 0.996 0.687 0.689 0.640 0.883 0.795 0.939 0.784 

Table 2. ISM course: ROC_AUC values 

Random Forest Decision Trees 

Problem-posing Problem-solving Peer-assessment Problem-posing Problem-solving Peer-assessment 

Train Test Train Test Train Test Train Test Train Test Train Test 

0.875 0.561 0.999 0.895 1.00  0.685 0.733 0.576 0.882 0.835 0.700 0.548 



exam 2, exam 1, quizzes (Gini, permutations) or exam 
1, quizzes, exam 2 (Boruta).  

The DT-based model gave a similar picture, with 
problem-posing coming out as the most important 
predictor, followed by exam 1, exam 2, and, lastly, 
quizzes.   

Looking at all the results, what comes out as the 
best predictor is generally problem-posing, followed 
by exams, and, finally, quizzes. 

The DT (Fig. 3) gives a visual representation of 
criteria-based decisions about student classification. 
For example, students with less than 4.5 points in 
problem-posing are likely to end up in class 1. If their 

result in problem-posing was still equal to or above 1 
point, they can end up in either class 1 or 2 depending 
on their quiz results. Interestingly, if their problem-
posing results were below 1 point, they could still end 
up in class 3, provided that their exam 1 results were 
above 16.3 points. Other paths through the DT can be 
interpreted in a similar way. Looking at the leaves of 
the DT, we can interpret the structure of the three 
classes. 

ISM. In the RF-based model, similarly to DMGT, 
problem-posing was found to be the most significant 
predictor according to the tree VIMs. The order of 

Figure 3. DMGT course: decision tree 

Figure 4. ISM course: decision tree 



other predictors varied depending on the VIM, as 
follows (from the most important): quizzes, exam 2, 
exam 1 (Gini); exam 1, quizzes, exam 2 (permutation); 
quizzes, exam 1, exam 2 (Boruta). 

The DT-based model confirmed problem-posing as 
the most important predictor, followed by exam 1, 
quizzes, and exam 2.  

Overall, the results undoubtedly point to problem-
posing as the most important predictor, followed by 
quizzes and exam 1, with exam 2 seeming the least 
important. 

The DT (Fig. 4) shows that students with less than 
16.3 points in problem-posing are likely to end up in 
class 1. If their result in problem-posing is above 15.3 
(and still less than 16.3) they would end up in class 2, 
regardless of their results in other activities. If the 
student's result in problem-posing is above 16.3, they 
are most likely to end up in class 3. Only in the case 
when the result in problem-posing is above or equal to 
17.3., students would end up in class 2. 

5 Discussion 

The comparison of prediction models based on the two 
algorithms, expectedly, suggests a higher efficiency of 
the RF compared to the DT. However, when it comes 
to problem-solving, both algorithms gave acceptable 
results. As for the other two phases of PBL, namely 
problem-posing and peer-assessment, the lower 
efficiency of the models may be related to the nature of 
these two PBL phases. For example, problem-posing is 
a type of activity in which students are generally less 
experienced, and which differs in terms of required 
competences from other parts of the assessment 
program. In fact, some research has pointed out that 
problem-posing is generally harder for students 
(Divjak, 2015). For example, identifying project 
requirements in real-life situations does not necessarily 
require the same competences as solving exams. 
Therefore, it makes sense that exams might not be good 
predictors of performance in problem-posing. On the 
other hand, this is not the case for problem-solving, as 
in this phase students necessarily use techniques, 
theory and models covered by exams. Moreover, 
problem-solving builds on problem-posing, so it is 
expected that problem-posing is the most important 
predictor. Although the potential of problem-posing in 
enhancing learning and understanding of concepts is 
clear (Cai, 2022), problem-posing, as a less researched 
part of PBL, remains a mystery. In that respect, our 
research is in line with previous studies (Cai & Rott, 
2024). Furthermore, when it comes to peer-
assessment, the better efficiency of the predictive 
models related to the graduate-level course may 
suggest that graduate-level students’ performance in 
peer-assessment is more consistent with other parts of 
the assessment program. This may also be related to the 
fact that in the DMGT course, students peer-assessed 
the projects solving the problems they had posed 

themselves, allowing them to better understand the 
problem and feel more ownership. 

As for other predictors, their importance may 
depend on the level of LOs and the learning context. 
For example, in the DMGT course, problem-solving 
tasks require students to use the algorithms and 
approaches which are covered by exams, but are more 
complex than those included in quizzes. Therefore, 
exams are a better predictor of PBL than quizzes. On 
the contrary, in the ISM course quizzes are more 
related to PBL, which is reflected in the importance of 
the predictors. Previous research (Divjak et al., 2024) 
showed that both formative and summative assessment 
are important for the prediction of final summative 
results. Here we showed that similar applies to PBL.  

If we look at the confusion matrices, we notice that 
the models perform best when it comes to lower-
performing (class 1) students. This has an important 
implication for identification and advising of students 
at risk from failing the course. 

Moreover, the confusion among higher classes can 
be explained if we consider the nature of PBL, which 
includes teamwork. Namely, the data reflect the grades 
obtained by the students in teams. However, this does 
not reflect the exact contribution of each of the students 
within a team, whose performance in other parts of the 
assessment program might differ significantly. This, 
however, does not mean that teamwork is not valuable 
for peer-learning. 

Furthermore, when it comes to explainability, DTs 
offer clear visual representations of how decisions are 
made in classification. However, DTs should be 
interpreted carefully, as they do not consider the 
timeline of activities, and do not present activities 
which are not nodes (vortices) of a given DT. In that 
sense, it is advisable to combine the DT results with 
other representations of students' progression, like the 
braided graph (Sankey diagram), which offer insights 
in the fluctuations of students between classes. 

In terms of practical implications, the tested 
predictive models could be used by practitioners to 
inform learning design and innovate assessment.  

6 Limitations and further research 

The main limitation of this study is a relatively small 
sample and a limited number of courses. Data 
collection through several years and in several courses 
is needed to obtain more comprehensive and 
conclusive results. Furthermore, the use of other 
prediction methods and algorithms, like Artificial 
Neural Networks, Gradient Boost or Support Vector 
Machine, may elicit different results, which could shed 
a different light. Finally, including digital trace data, as 
well as multimodal data, in LA, is important in order to 
build predictive LA models which could be used as the 
basis for recommendation systems. 



7 Conclusion 

This paper contributes to the growing body of research 
on the use of learning analytics to understand and 
enhance problem- and project-based learning (PBL). 
We presented predictive analytics models based on the 
Random Forest (RF) and Decision Tree (DT) 
algorithms. We confirmed that while RF enables better 
efficiency, DTs are more interpretable. The models 
provided the best predictions for the lower performing 
students in PBL. Importantly, the study found that 
students’ performance in problem-posing is an 
important predictor of problem-solving. Other 
predictors from the assessment program, including 
both formative and summative assessment, can be used 
as predictors, but fine-tuned according to the learning 
context. Finally, problem-posing cannot be easily 
predicted based on formative and summative 
assessment results.   
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