Agile Software Development Life Cycle Model for Internet of
Things

Goran Filinié¢
University of Zagreb
Faculty of Organization and Informatics
Pavlinska 2, 42000 Varazdin, Hrvatska
gfilinic22@student.foi.hr

Abstract. In the fast developing landscape of loT
technology, the development of effective software so-
lutions faces unique challenges due to the integration
of diverse hardware components and the need for con-
tinuous adaptation to evolving requirements. Tradi-
tional software development lifecycle (SDLC) models
often struggle to accommodate the iterative nature and
rapid pace of IoT projects. This paper proposes an
Agile SDLC model tailored specifically for IoT sys-
tems, integrating principles from Agile methodologies,
Rapid Prototyping, and Model-Driven Development.
The model emphasizes continuous iteration, compre-
hensive documentation, and adaptive design, aiming
to enhance development efficiency, mitigate risks, and
accelerate time-to-market for IoT solutions. By ad-
dressing the complexities of loT development through
structured yet flexible phases—ranging from require-
ment gathering and design to deployment and main-
tenance—the proposed model seeks to provide a robust
[framework capable of meeting the dynamic demands of
1oT environments. This model aims to contribute to the
advancement and adoption of effective SDLC practices
in IoT development.

Keywords. Agile SDLC, IoT systems, Rapid Proto-
typing, Model-Driven Development, software devel-
opment lifecycle, embedded systems, embedded pro-
gramming

1 Introduction

The accelerated advancement of the Internet of Things
(IoT) technology has brought about significant trans-
formations in various industries, enhancing efficiency,
connectivity, and automation. Despite these advance-
ments, there remains a notable gap in structured guide-
lines for the development of IoT projects (Fahmideh
et al., 2022). This absence of a comprehensive frame-
work poses challenges for developers and organiza-
tions aiming to implement IoT solutions efficiently and
effectively.

Because [oT projects inherently involve unique chal-
lenges with the perspective of integrating physical de-
vices with software components, they introduce a layer

Ivan Magdaleni¢
University of Zagreb
Faculty of Organization and Informatics
Pavlinska 2, 42000 Varazdin, Hrvatska

ivan.magdalenié@foi.unizg.hr

of complexity not present in traditional software devel-
opment. Each IoT project is unique due to the spe-
cific hardware requirements and the need for seam-
less interaction between devices and software Singh
et al. (2014), Guerrero-Ulloa et al. (2019), Dado et al.
(2015), Madakam et al. (2015). This added complexity
necessitates a more flexible and adaptive approach to
the SDLC, especially when considering the integration
of embedded systems which play a critical role in IoT
infrastructure.

To bridge this gap, an enhancement of the clas-
sic SDLC model is proposed by integrating present
development practices such as Agile methodologies
Srivastava et al. (2017), Schwaber and Sutherland
(2011), Salo and Abrahamsson (2008), Rapid Pro-
totyping Lantz (1986), Fern and Donaldson (2003),
and Model-Driven Development Cabot (2012). These
modern approaches not only streamline the develop-
ment process but also foster greater flexibility, iterative
improvements, and a higher degree of customization,
which are critical in IoT project management.

The goal of this research is to synthesize these in-
sights and propose a refined SDLC model tailored
specifically for IoT projects. By leveraging modern
practices, this model aims to optimize the development
process, ensuring that [oT solutions are not only inno-
vative but also robust, scalable, and aligned with the
fast-paced evolution of technology. Through this en-
deavor, we hope to contribute to the establishment of
a more structured and efficient framework for IoT de-
velopment, ultimately driving further advancements in
this transformative field.

The rest of the paper is structured as follows. Sec-
tion 2 presents a review of relevant related work in
IoT development methodologies. Section 3 introduces
the proposed Agile SDLC model for IoT, highlighting
its fundamental components and principles. Section
4 provides a detailed discussion on the potential ben-
efits and challenges of the model. Finally, Section 5
concludes the paper by summarizing key findings, dis-
cussing implications for future research, and outlining
potential avenues for further exploration.

2 Related Work

The current landscape of IoT systems development
has been extensively explored by Fahmideh et al.
(2022). Their mixed-methods study identified a signif-
icant knowledge gap in the development lifecycle for
IoT projects. By synthesizing existing literature, they
derived and validated a conceptual framework outlin-
ing 27 crucial tasks for integrating IoT systems into
development processes Fahmideh et al. (2022). This
framework, validated through a global survey of 127
IoT practitioners, forms the cornerstone of this paper’s
proposed model, which aims to establish effective pro-
cesses documented in the literature.

Gupta and Gayathri (2022) closely examined the
Software Development Lifecycle (SDLC), as well as
emphasizing the critical role of early testing Jat and
Sharma (2017). Their studies highlighted that early ini-
tiation of testing prevents bugs, reduces costs, and ac-
curately determines requirements, ultimately improv-
ing software reliability and performance (Gupta and
Gayathri (2022), Jat and Sharma (2017)). This under-
scores the importance of testing in the SDLC and its
role in enhancing software development outcomes.

In safety-critical domains like medical device soft-
ware development, Klespitz et al. (2015) , Dayo et al.
(2022) emphasized the necessity of robust lifecycle
management systems. Their case study highlighted the
need for stringent documentation and objective mea-
sures to ensure effective and mature product develop-
ment. This is particularly crucial for meeting safety
standards and accelerating system implementation in
medical software development.

Agile methodologies applied to IoT systems (IoTS)
development were reviewed by Guerrero-Ulloa et al.
(2023). Analyzing 60 documents from an initial
4,303, they found that 42.1% of 10TS developments
used Scrum exclusively, with others combining it with
methodologies like XP, Kanban, and Rapid Prototyp-
ing. The study highlighted the prominence of model-
based approaches such as Model-Driven Engineering
(MDE) and Model-Driven Development (MDD) in ad-
dressing [oTS technology heterogeneity Cabot (2012).
However, gaps in requirement elicitation, maintenance,
and withdrawal phases were noted, emphasizing the
need for comprehensive methodologies.

Alfawair (2022) proposed the IoTSDLC model,
which adapts the traditional SDLC to address IoT-
specific challenges like heterogeneity and complex in-
tegration requirements. Despite its emphasis on de-
tailed documentation and system specification, the
model’s linear approach lacks flexibility for agile de-
velopment. Another example can be looked at Yang
and Bi (2014). This rigidity and absence of agile inte-
gration guidelines limit its applicability in dynamic loT
environments where rapid prototyping and continuous
iteration are essential.

These studies underscore the diverse challenges and

methodologies in IoT systems development. They
highlight the need for structured SDLC tailored to IoT
projects, the critical role of early testing, robust man-
agement systems, and the application of agile method-
ologies. Integrating these insights into a unified SDLC
model is imperative to meet the dynamic demands
of current IoT environments, ensuring comprehensive
support for developers and stakeholders. The proposed
unified agile SDLC model integrates these insights to
meet the IoT environments, ensuring comprehensive
support for developers and stakeholders, and enhancing
the overall effectiveness and adaptability of IoT system
development.

3 Agile SDLC Model for IoT

Figure 1 illustrates the proposed Agile SDLC model
tailored specifically for IoT projects. Unlike traditional
Agile SDLC, which typically focuses on rapid itera-
tive cycles for software delivery Yang and Bi (2014),
this model is designed to address the extended life-
cycle and complex integration challenges characteris-
tic of IoT systems. This include device heterogeneity
and system reliability Alberternst et al. (2021), Lakhan
et al. (2022). Primary divergences from traditional Ag-
ile SDLC include:

1. Long-term lifecycle management: The model
considers the extended lifecycle typical of IoT
projects, which require careful planning not only
for development but also for ongoing maintenance
and adaptability. It incorporates continuous op-
timization and grooming to minimize future in-
terventions, ensuring sustained performance over
time.

2. Grooming phase: A dedicated phase called
grooming is included to refine and optimize the
system’s architecture and components, ensuring
robustness and scalability. This phase addresses
the specific needs of IoT projects, where ongoing
system refinement is critical.

3. Maintenance and Support: This phase intro-
duces mechanisms for both small updates and ma-
jor changes, providing structured support for the
long-term maintenance of IoT systems:

« Small updates: Incremental updates are ap-
plied to address minor bugs and optimize per-
formance, ensuring compatibility with evolving
technologies without disrupting stability.

« Major changes: Significant upgrades or mod-
ifications are planned, tested, and deployed in
a structured manner to achieve substantial im-
provements while minimizing disruption.

The model is structured into several distinct phases,
each crucial for IoT project success. The Require-
ment Phase gathers specific requirements, considering

the diverse interactions within IoT systems. The De-
sign Phase translates these requirements into a flex-
ible design adaptable to iterative development. The
Rapid Prototyping Phase involves continuous cycles
of development and testing, particularly suitable for
addressing hardware-related challenges. The Groom-
ing Phase refines and optimizes the system, ensur-
ing robustness before deployment. The Deployment
Phase ensures seamless integration and operation of
IoT components. Finally, the Maintenance and Sup-
port Phase manages both minor updates and major
changes, ensuring the system remains adaptable and
responsive to new requirements and technological ad-
vancements.

The proposed model serves as a flexible guideline
rather than a rigid framework, accommodating the var-
ied requirements of IoT projects. Iteration lengths and
phase transitions are intentionally not fixed, as they de-
pend on the project’s scope, the involved stakeholders,
and specific planning needs. In early phases, the pro-
cess can either progress quickly or extend over sev-
eral years. During the Rapid Prototyping phase, the
development approach can vary—from Scrum to rapid
prototyping or custom methodologies—allowing teams
to adapt based on their preferences. Similarly, the
Grooming and Maintenance phases are highly adapt-
able, recognizing that the timeline for product retire-
ment is unpredictable Yang and Bi (2014).

The Requirement phase is essential for gathering
detailed and specific requirements that account for the
diverse components and interactions within IoT sys-
tems. This phase involves collecting functional and
non-functional requirements, assessing project feasi-
bility, identifying relevant stakeholders, and devel-
oping conceptual models International Organization
for Standardization (2019). Leveraging Model-Driven
Principles enhances the clarity and precision of re-
quirements, ensuring that all system aspects are thor-
oughly considered. MDD can be particularly useful
in IoT projects by enabling systematic transformations
from high-level conceptual models to more detailed de-
signs, facilitating ongoing refinement throughout the
development process. This approach ensures that the
system architecture remains adaptable to evolving re-
quirements Cabot (2012).

In contrast, Model-Driven Architecture (MDA), a
specific framework within MDD, is applied when there
is a need to separate platform-independent models
(PIMs) from platform-specific models (PSMs) Group)
(2024). MDA is especially relevant in IoT environ-
ments where diverse hardware and software platforms
must be supported. By using MDA, IoT systems can
be designed in a way that allows for seamless deploy-
ment across various platforms, while ensuring the in-
tegrity and functionality of the system are preserved
Kautz et al. (2018). Thus, while MDD provides the
overall methodology for refining and evolving models,
MDA should be employed in scenarios where cross-

[Requirement analysis \

« Functional and non functional req.
« Project feasability

 Stakeholders

« Conceptual modelling j€—

Recommendation:
Leverage Model - Driven Principles

AN

\,
(System design

« Expanding Conecptual models
« Detailed UML

« Data flow

« Decision trees and tables

« Simulation

+ System Architecture

_ J
(Rapid prototyping (lterative) \

Development

Testing

+ Development of
application

+ Hardware development

Ea + Development of a System

+ Resolving Dependencies

» Feedback Collection and

Iteration

\ Documentation!

f Grooming

« System stability

« Reporting missing
components

« Integration testing

« Security considerations

« Performance optimization

+ Optimization

] y
« Rigorous testing
. iewing and

. of system
« Addressing potential technical debt

r Deployment \
+ Release planning
« Configuration management
« Deployment automation
« User training and support
+ Rollback planning and procedures
N
(Maintenance & Support \

« Bug tracking and resolution
« Patch management
« Performance monitoring and tuning
 User feedback collection
& GordT N R

p
« Version control and change management

Major changes,
new requirements

Minor upgrades,
bug fixes, tweaks

Figure 1: Proposed new model for agile [oT SDLC

platform deployment and compatibility are major con-
siderations.

In the Design phase, the focus shifts to translat-
ing the gathered requirements into a robust and flex-
ible design. This phase includes expanding concep-
tual models into detailed UML diagrams, mapping
data flows, constructing decision trees, and conduct-
ing simulations Brambilla et al. (2017). The objective
is to develop a comprehensive system architecture that
addresses all identified requirements while remaining
adaptable to iterative enhancements.

The Rapid prototyping phase embodies the core
principles of agile development, with continuous cy-

cles of development, testing, and coding. This iterative
approach allows for rapid prototyping and immediate
resolution of issues, enabling the system to evolve in
alignment with user needs and technological advance-
ments Guerrero-Ulloa et al. (2023), Zelfia et al. (2022).

The Grooming phase focuses on refining and op-
timizing the system, essential for IoT projects. This
phase involves rigorous testing, optimizing perfor-
mance, and updating documentation to reflect the latest
system state. The Grooming Phase enhances overall
system stability and performance, aligning it with the
dynamic requirements of IoT environments.

The Deployment phase ensures smooth integra-
tion and deployment of IoT components, facilitating
a seamless transition from development to operation.
Deployment strategies are designed to minimize dis-
ruption and ensure the system’s high performance and
reliability Yang and Bi (2014).

Finally, the Maintenance and support phase pro-
vides mechanisms for both minor upgrades and major
changes, ensuring the system remains adaptable and
responsive to new requirements and technological ad-
vancements. Minor upgrades are handled through rapid
development and testing, while significant changes
trigger a comprehensive reassessment and planning
process. This phase includes bug tracking, patch man-
agement, performance monitoring, and continuous im-
provement initiatives, ensuring the system remains ro-
bust throughout its lifecycle.

By integrating these phases, the proposed Agile
SDLC model for IoT offers a structured yet flexible
framework tailored to the unique challenges of IoT sys-
tem development, emphasizing continuous iteration,
comprehensive documentation and adaptive design.

4 Discussion

The proposed Agile SDLC model for IoT systems rep-
resents a framework developed from practical experi-
ence in IoT project environments, particularly in smart
home and smart city domains where embedded sys-
tems play an important role. It requires thorough re-
view and validation by peers and industry experts. One
of the challenges in evaluating the effectiveness of this
model lies in the difficulty of quantifying its benefits.
While a comparative analysis using time as a met-
ric—measuring the duration of similar projects with
and without this model—could offer insights, it may
not fully capture the model’s advantages in adaptabil-
ity and responsiveness.

Traditional SDLC models often struggle with the dy-
namic and iterative nature of IoT development. By in-
tegrating Agile methodologies, this model aims to en-
hance the ability to pivot, make changes, and adapt to
evolving project requirements, which is a vital require-
ment in IoT-related projects. This approach seeks to
offer a more flexible and responsive framework.

One significant potential benefit of this model is its
focus on maintenance. It is designed to reduce the
frequency and severity of interventions required post-
deployment. Ideally, this model will lead to fewer
maintenance incidents, and when issues do arise, they
will be quicker and easier to address, particularly con-
cerning embedded contexts. This could result in a more
stable and reliable system over the long term.

Moreover, the proposed model integrates modern
practices from IoT development, such as Model-Driven
Architecture (MDA) and Agile methodologies, into a
streamlined SDLC framework. This hybrid approach
is intended to provide a balance between the struc-
tured processes of traditional SDLC and the flexibility
needed for IoT projects. By doing so, it aims to be
adaptable across various project types and sizes, offer-
ing a versatile tool for developers.

However, it is important to note that this model is
likely to work most effectively with small development
teams, as it aligns with the principles of Agile and
Scrum practices. Agile methodologies are typically
best suited for smaller teams due to their emphasis on
close collaboration, rapid iteration, and flexibility. The
model’s effectiveness and scalability for larger teams
remain uncertain, as it was not specifically designed
for that context.

While the model shows promise, it is currently con-
ceptual and has yet to be empirically validated through
extensive real-world applications. The model’s suc-
cess hinges on its application in pilot projects, which
will be crucial in identifying its strengths and weak-
nesses. These pilot implementations will provide valu-
able feedback, helping to refine the model and ensure
it can address practical challenges and deliver tangible
benefits.

Additionally, the model’s effectiveness in different
industry contexts needs to be assessed. IoT projects
vary widely in scope and complexity, from small-scale
consumer devices to large-scale industrial systems.
The model’s adaptability and scalability across these
diverse contexts will be a main factor in its broader
adoption. Future research should focus on empirical
studies and case studies to evaluate how well the model
performs in these diverse settings, thereby solidifying
its practical applicability.

5 Conclussion

The proposed Agile SDLC model for IoT systems rep-
resents a significant advancement in addressing the
complexities of IoT development. By integrating Agile
methodologies, Rapid Prototyping, and Model-Driven
Development, the model offers a flexible and iterative
approach essential for managing diverse hardware inte-
grations and complex software interactions inherent in
IoT projects. Its emphasis on continuous iteration and
collaboration enhances development efficiency, mini-
mizes risks, and accelerates time-to-market for IoT so-

Iutions. Moreover, the model’s structured yet adapt-
able framework ensures responsiveness to changing
requirements, technological advancements, and user
feedback throughout the development lifecycle. By
focusing on maintenance and support phases, it aims
to reduce post-deployment issues and enhance system
reliability, necessary for sustaining IoT solutions over
the long term. The iterative development cycles facil-
itate rapid prototyping and validation, enabling early
detection and resolution of issues while allowing for
incremental enhancements based on real-world perfor-
mance. Looking forward, further validation through
empirical studies and case studies across diverse IoT
applications will be essential to refine and scale the
model for broader adoption in different industry con-
texts where embedded systems play a pivotal role. The
proposed Agile SDLC model stands poised to drive in-
novation and efficiency in IoT development, contribut-
ing to the advancement of transformative IoT solutions
in a rapidly evolving technological landscape.

References

Alberternst, S., Anisimov, A., Antakli, A., Duppe,
B., Hoffmann, H., Meiser, M., Muaz, M., and
Spieldenner, D. (2021). Zinnikus, i. orchestrating
heterogeneous devices and Al services as virtual
sensors for secure Cloud-Based IoT applications.
Sensors, 21.

Alfawair, M. (2022). Internet-of-things: A system de-
velopment life cycle (sdlc). J. Theoretical Appl.
Inform. Technol., 100(5):1643-1653.

Brambilla, M., Umuhoza, E., and Acerbis, R. (2017).
Model-driven development of user interfaces for
IoT systems via domain-specific components and
patterns. Journal of Internet Services and Applica-
tions, 8(1):14.

Cabot, J. (2012). Clarifying concepts: Mbe vs
mde vs mdd vs mda. Post at Modeling Lan-
guages, http://modeling-languages.com/clarifying-
concepts-mbe-vs-mde-vs-mdd-vs-mda/, 86. Ac-
cessed: 2024-8-12.

Dado, M., Janota, A., and Spalek, J. (2015). Chal-
lenges and unwanted features of the smarter cities
development. In Internet of Things. loT Infras-
tructures, Lecture notes of the Institute for Com-
puter Sciences, Social Informatics and Telecom-
munications Engineering, pages 3-8. Springer In-
ternational Publishing, Cham.

Dayo, Z. A., Aamir, M., Dayo, S. A., Khoso, I. A.,
Soothar, P., Sahito, F., Zheng, T., Hu, Z., and Guan,
Y. (2022). A novel compact broadband and ra-
diation efficient antenna design for medical IoT
healthcare system. Math. Biosci. Eng., 19(4):3909—
39217.

Fahmideh, M., Ahmad, A., Behnaz, A., Grundy, J.,
and Susilo, W. (2022). Software engineering
for internet of things: The practitioners’ perspec-
tive. IEEE Transactions on Software Engineering,
48(8):2857-2878.

Fern, D. A. and Donaldson, S. E. (2003). Tri-Cycle: a
prototype methodology for advanced software de-
velopment. In [1989] Proceedings of the Twenty-
Second Annual Hawaii International Conference
on System Sciences. Volume II: Software Track.
IEEE Comput. Soc. Press.

Group), O. O. M. (2024). MDA specifications.
http://www.omg.org/mda/specs.htm. Ac-
cessed: 2024-8-12.

Guerrero-Ulloa, G., Rodriguez-Dominguez, C., and
Hornos, M. J. (2019). IoT-based system to help
care for dependent elderly. In Communications in
Computer and Information Science, Communica-
tions in computer and information science, pages
41-55. Springer International Publishing, Cham.

Guerrero-Ulloa, G., Rodriguez-Dominguez, C., and
Hornos, M. J. (2023). Agile methodologies applied
to the development of internet of things (iot)-based
systems: A review. Sensors, 23(2).

Gupta, S. and Gayathri, N. (2022). Study of the soft-
ware development life cycle and the function of
testing. In 2022 International Interdisciplinary Hu-
manitarian Conference for Sustainability (IIHC),
pages 1270-1275.

International Organization for Standardization (2019).
Iso/iec/ieee international standard — systems and
software engineering - content of life-cycle in-
formation items (documentation). ISO/IEC/IEEE
15289:2019(E), pages 1-86.

Jat, S. and Sharma, P. (2017). Analysis of different
software testing techniques. International Journal
of Scientific Research in Computer Science and En-
gineering, 5(2):77-80.

Kautz, O., Roth, A., and Rumpe, B. (2018). Achieve-
ments, failures, and the future of model-based soft-
ware engineering.

Klespitz, J., Bir6, M., and Kovécs, L. (2015). Aspects
of improvement of software development lifecy-
cle management. In 2015 16th IEEE International
Symposium on Computational Intelligence and In-
formatics (CINTI), pages 323-327.

Lakhan, A., Mohammed, M. A., Abdulkareem, K. H.,
Jaber, M. M., Nedoma, J., Martinek, R., and
Zmij, P. (2022). Delay optimal schemes for
internet of things applications in heterogeneous

edge cloud computing networks. Sensors (Basel),
22(16):5937.

Lantz, K. E. (1986). The prototyping methodology.
Prentice-Hall, Inc., USA.

Madakam, S., Ramaswamy, R., and Tripathi, S. (2015).
Internet of things (IoT): A literature review. J.
Comput. Commun., 03(05):164-173.

Salo, O. and Abrahamsson, P. (2008). Agile methods in
european embedded software development organi-
sations: a survey on the actual use and usefulness

of extreme programming and scrum. [ET Softw.,
2(1):58.

Schwaber, K. and Sutherland, J. (2011). The scrum
guide. Acrum Allience, 21.

Singh, D., Tripathi, G., and Jara, A. J. (2014). A sur-
vey of Internet-of-Things: Future vision, architec-
ture, challenges and services. In 2014 IEEE World
Forum on Internet of Things (WF-1oT). IEEE.

Srivastava, A., Bhardwaj, S., and Saraswat, S. (2017).
SCRUM model for agile methodology. In 2017 In-
ternational Conference on Computing, Communi-
cation and Automation (ICCCA). IEEE.

Yang, L. Q. and Bi, Y. Y. (2014). Internet of things
technology implementation by applying SDLC
model: The intelligent storage management Sys-
tem. Appl. Mech. Mater., 556-562:5385-5390.

Zelfia, H., Simanungkalit, T., and Raharjo, T. (2022).
Comparison of scrum maturity between internal
and external software development: A case study
at one of the state-owned banks in indonesia. In
2022 Ist International Conference on Information
System Information Technology (ICISIT).

