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Abstract. Humans observe the world predominantly
through vision, naturally perceiving depth and dis-
tance. This ability is thanks to binocular vision,
where our two eyes collaborate to form a single, three-
dimensional image. This principle is also applied in
computers through a technology known as stereo vi-
sion. Stereo vision is a pivotal technology with appli-
cations across various fields, including medicine, en-
tertainment, robotics, and industry. This paper uses
this innovative technology to enhance gaming experi-
ences and human-machine interactions. By integrating
stereo vision with deep learning techniques for object
detection, we estimate the 3D positions of detected ob-
Jects and utilize this information to control specific as-
pects of computer games.
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1 Introduction

Humans observe the world primarily through their
eyes, which possess the natural ability to perceive the
depth of objects. This depth perception allows us to de-
termine whether something is near or far. This ability,

known as binocular vision, relies on our two eyes to
create a three-dimensional image. Inspired by this bio-
logical phenomenon, computer vision employs a simi-
lar approach called stereovision. Stereovision enables
machines to interpret 3D space with applications across
various fields [1, 2]. In medicine, it aids in perform-
ing precise surgical procedures [3]. In entertainment,
it allows for the creation of immersive 3D movies; in
robotics, it facilitates navigation and manipulation; and
in industry, it enhances automated quality control. As
technology advances, stereovision continues integrat-
ing into more segments of our lives.

Gaming has also become a significant part of daily
life for many individuals, providing a means to re-
lax and socialize. While gaming can benefit mental
health, it often negatively impacts physical health due
to the sedentary nature of most modern games. This pa-
per addresses this issue by exploring using the human
body as a game controller. By integrating stereovision
with deep learning techniques, we propose a system
for real-time human tracking. This system detects ob-
jects in images, estimates their 3D positions, and uses
this information to control various aspects of computer
games, leading to more immersive and interactive ex-



periences. Additionally, we propose a cost-effective
stereovision solution, addressing the high expense of
traditional systems.

Our motivation for this project began last year when
we aimed to create an engaging project to attract the
broad public into scientific projects. It led to the de-
veloping of a game controller project based on aug-
mented reality. The controller captured images with
an ESP32-CAM camera, which were then processed
by a server running a program that detected characters
in the image and recorded their positions on the X and
Y axes. Such coordinates were used in an application
environment, such as controlling the keyboard or char-
acter movement in a game. We tested this system dur-
ing our faculty’s open days, and it was well-received
by students. However, the system had several issues,
including problems with motion recognition in images
with multiple people, low FPS causing lag, and inaccu-
rate position tracking using only two axes.

The most prevalent issue was inaccurate tracking.
This problem arose due to the camera’s perception of
objects at different depths. For instance, consider two
actors of the same height, each on a plane with uniform
characteristics in Fig. 1.
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Figure 1: Real world Actors Position

For this example, we use the actors pelvises as ref-
erence points in Fig. 2. In the real world, their pelvises
are at the same height (Y coordinate).
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Figure 2: Height of actors pelvises

However, when viewed through the camera, the
closer actor is projected at a larger scale compared to
the one further away in Fig. 3. This means that in the
image, the actor who is closer, but at the same height
in the real world, appears higher on the image plane.
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Figure 3: Real height of actors pelvises

This issue is significant because we are trying to de-
tect when an actor jumps. This is usually done us-
ing Human Action Recognition techniques [4, 5, 6, 7].
However, these techniques are computationally de-
manding for our system. Therefore, in the older version
of our system, we used a threshold to detect jumps. We
detected persons in the image and took the middle of
the bounding box of each person. We then checked if
this midpoint was above a certain threshold. If it was, it
meant that the person had jumped. This threshold was
adaptive because not every person and environment are
the same. While this approach worked, it introduced
many false jump detections into our system, which was
useful but not as enjoyable in the game play.

Due to these problems, we decided to develop a new
version, focusing primarily on addressing the issue of
incorrect tracking with only two axes.

Additionally, one of the motivations for this article
was the high price of stereo cameras on the market.
Stereo cameras are usually costly for regular use. How-
ever, our system is built using inexpensive webcams,
improving accessibility to various applications. While
these cheaper cameras are not as high-quality as the
commercially available stereo systems, this limitation
does not affect our use case and is suitable for charac-

ter tracking.



2 Hardware and Software

In our initial attempt to build a stereo vision system,
we used the ESP32-CAM module primarily for its af-
fordability. The ESP32-CAM is a microcontroller with
an integrated camera, offering both wireless and wired
connectivity, which provides flexibility in our imple-
mentation. However, during testing, we encountered
significant limitations. The image quality was poor, ad-
versely affecting the performance of our deep learning
model, which struggled to detect persons accurately.
The frame rate was too low for real-time applications,
rendering it unsuitable for our needs.

We replaced the ESP32-CAM with the Powerton
Universal Webcams in Fig. 4 to address these short-
comings. This webcam offers a good balance between
cost and performance, providing higher-resolution im-
ages and a better frame rate, which significantly im-
proves the quality of our stereo vision system. The pri-
mary drawback of this webcam is that it can only be
used with a wired connection.
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Figure 4: Stereo vision application hardware design

For the computational tasks required for image pro-
cessing and deep learning algorithms, we used a note-
book computer with the following specifications:

» Processor: Intel Core i5 - 11th Gen Intel(R)
Core(TM) i5-1135G7 @ 2.40GHz 2.42 GHz

+ Graphics Card: NVIDIA GeForce MX450

« RAM: 16.0 GB

The processor handles data input from the cameras,
while the graphics card accelerates the computations of
deep learning algorithms necessary for real-time object
detection.

We utilized the OpenCV library for image process-
ing, which is widely used for computer vision appli-
cations. Next, we employed MediaPipe, a Python li-
brary designed to implement deep learning algorithms
in projects for object detection within images.

3 Implementation

The implementation section details the practical steps
and methodologies employed to develop the stereovi-
sion system for real-time human tracking and interac-
tion.

3.1 Camera Mounting

We secured both Powerton Webcams to the fixed base
using a strong adhesive to ensure a stable and reliable
stereovision system prototype in Fig. 5. Fixing the
cameras in place is essential for maintaining consistent
calibration, as any movement could disrupt the align-
ment and accuracy of the stereovision setup. The cam-
eras were positioned at a predetermined distance from
each other and oriented parallel to ensure appropriate
fields of view overlap.

Figure 5: Stereo vision application

3.2 Image Collection for Calibration

For accurate calibration, capturing images from both
cameras simultaneously is crucial. This synchroniza-
tion ensures that corresponding points in each image
pair are captured under identical conditions. We col-
lected a series of images from each camera, capturing
various objects and scenes at different distances and an-
gles. In these images, we used a chessboard pattern that
provides well-defined corners essential for calibration.
These images served as the dataset for calibrating the
stereovision system.

3.3 Camera Calibration

We used a series of collected images in Fig. 6, con-
taining a chessboard pattern to perform camera cali-
bration. The goal was to detect the chessboard corners
in these images using the OpenCV library. Identifying
these corners in both the left and right camera images
is essential to ensure accurate calibration. The detected
corner points from both images were then used as ref-
erence points for calculating the camera’s intrinsic pa-



rameters. These parameters are crucial for accurately
aligning the stereo-vision system and ensuring precise
depth perception.

Figure 6: Left and Right image corner detection

Intrinsic calibration of a camera determines internal
parameters that affect how images are captured. These
parameters include the focal length, optical center, and
lens distortion coefficients. We calculated these pa-
rameters using OpenCYV functions and optimized them
to reduce distortion and enhance image quality. This
optimization process helps minimize the effect of lens
distortion and improve the accuracy of the camera pa-
rameters.

Stereo calibration ensures that the spatial relation-
ships between cameras are accurately determined and
their images are aligned to enable depth perception
[8, 9, 10]. This process involves determining the rel-
ative positions and orientations of two cameras, com-
puting the rotation and translation vectors, and the es-
sential and fundamental matrices, as shown in Fig. 7.
These matrices describe the geometric relationships be-
tween corresponding points in the two images, which
are necessary for accurate 3D reconstruction.

Using the parameters obtained from stereo calibra-
tion, we perform stereo rectification. Stereo rectifica-
tion aligns the image planes of the two cameras, mak-
ing subsequent depth estimation more straightforward
and more accurate. This process involves computing
rectification maps for both cameras, which are then
stored for future use.
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Figure 7: Camera Calibration Diagram

3.4 3D Tracking

For 3D tracking, we utilize a live stream of images
from our stereo vision system, simultaneously captur-
ing left and right images, as displayed in Fig. 8. We
cannot use the raw images directly for depth estima-
tion due to inherent lens distortions and misalignments.
These distortions can significantly affect the accuracy
of the depth calculation. Therefore, we apply stereo
rectification and undistortion techniques using precom-
puted stereo maps. These stereo maps, calculated as
described in Section 3.3, are essential for correcting
lens distortions and aligning the images from both cam-
eras. The rectification process involves remapping the
pixels of the images to a common plane, ensuring that
corresponding points in the left and right images are
horizontally aligned. This alignment is crucial for ac-
curate depth measurement. By applying the stereo
maps to every pair of images in the live stream, we
ensure that each frame is corrected for any distortions,
providing a reliable basis for subsequent depth calcu-
lations. We use the deep learning library MediaPipe to
detect and track person landmarks. MediaPipe is a ver-
satile framework designed for building machine learn-
ing pipelines. It provides a robust solution for detect-
ing and tracking person landmarks in real time. Once
the hand landmarks are detected in both images, we
can calculate the 3D position of these landmarks us-
ing triangulation. Triangulation involves measuring the
disparity between the positions of corresponding land-
marks in the left and right images [11]. The disparity is
the horizontal shift between the same point in the two
images, which is directly related to the depth of the
point. In addition to depth, we can also compute the
X and Y coordinates of the landmark in the 3D space
relative to the camera’s coordinate system.

3.5 Deep Learning implementation

For person detection, we utilize the MediaPipe deep
learning framework, which includes multiple pipelines
such as person detection, face detection, hand tracking,
and pose estimation. MediaPipe enables rapid imple-
mentation of these pipelines, but other algorithms, such
as Convolutional Neural Networks (CNNs), can also be
used for object detection.

MediaPipe’s person detection pipeline leverages ad-
vanced deep learning techniques to accurately detect
and localize humans in images or video frames. The
pipeline begins by preprocessing the data to ensure
it meets the model’s requirements. This typically in-
volves resizing the image to a standard dimension, nor-
malizing pixel values, and converting the image format
if necessary.

The framework then employs Convolutional Neu-
ral Networks (CNNs) [12] for feature extraction. The
lower layers of the CNN capture simple features such
as edges and textures, while the deeper layers iden-
tify more complex patterns like shapes and object parts.
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Figure 8: Tracking Diagram

These extracted features are used for the detection and
localization of persons within the image.

MediaPipe utilizes networks such as Single-Shot
MultiBox Detector (SSD) [13] or Region-Based Con-
volutional Neural Network (R-CNN) [14] for this pro-
cess. These networks detect objects and draw bound-
ing boxes around them, allowing for precise localiza-
tion within the image. The person detection pipeline
also includes post-processing steps, which refine the
raw detection output to enhance accuracy and readabil-

ity.

3.6 System Aplication

To demonstrate the application of our system, we se-
lected the Chrome Dinosaur game. This choice stems
from a previous project in which we developed a com-
puter vision gaming controller for this game. However,
the earlier controller had a limitation: it could only
capture movement in the 2D plane, detecting changes
along the X and Y axes. It posed a problem because
our system could not accurately interpret its positional
change when a detected point was closer to the camera.

Our new system overcomes this limitation by detect-
ing objects in 3D space. This advancement ensures
that the distance from the camera does not affect the
object’s perceived position on the X and Y axes. To
simplify the process, we adjusted the system to detect
the index finger in images and calculate its 3D position
shown in Fig. 9. With this capability, we can accurately
track the finger’s position.

We implemented a threshold on the Y (height) axis
to facilitate interaction as displayed in Fig. 10. The sys-
tem can detect when the finger crosses the defined Y
axis threshold by live tracking the finger’s movement.
When the finger crosses this threshold, the system sim-
ulates a press of the spacebar on the keyboard. After
pressing the spacebar, the system waits for the finger
to move back across the threshold before triggering an-
other press. This mechanism enables the user to control
the jumping action in the Chrome Dinosaur game. The
player can effectively control the dinosaur’s jumps by
moving the finger up and down.

Figure 9: Detected finger Left and right image
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Figure 10: 3D Space with Y threshold

Compared to the first system, the new system does
not require dynamic thresholding, enhancing its preci-
sion and reducing false jump click occurrence.

Additionally, our new camera system employs
higher-resolution cameras, enabling the deep learning
algorithm to recognize objects in images better.

The system operates at an average of 20 FPS when
using a GPU. When using a CPU, the FPS drops to
about 10. While both setups are playable, utilizing the



CPU results in noticeable latency, causing a slight de-
lay between the finger crossing the threshold and the
jump action. Although this latency does not render the
game unplayable, it negatively impacts the gaming ex-
perience.

3.7 Performance Results

To evaluate the precision of our system, we conducted
an experiment. We set detection to person detection
and performed 100 jumps for each system and recorded
instances where the system falsely registered a jump
when no jump occurred. These 100 jumps were per-
formed consecutively, and data was recorded in inter-
vals of 10 jumps. The counter did not reset after each
interval, but continued counting from the previous to-
tal.

We used an external button to manually count the
jumps. While the system automatically counted the
jumps, we manually pressed the button after each ac-
tual jump, incrementing a separate counter for real
jumps. After every 10 real jumps, we calculated
the difference between the system’s jump count and
the real jump count to determine the number of false
jumps.

Jumps False Sys 1  False Sys 2
10 4 0
20 7 0
30 8 2
40 13 3
50 14 3
60 17 5
70 22 5
80 23 5
90 27 5

100 29 6
Percentage: 29% 6%

Table 1: Comparison of False Jumps in Old System
(Sys 1) and New System (Sys 2)

Table 1 shows that after 100 jumps, System 1 per-
formed poorly, registering false jumps 29% of the time.
In contrast, System 2 recorded only 6% false jumps,
demonstrating a substantial improvement in perfor-
mance. It’s important to note that these metrics were
obtained in a controlled environment and may vary in
real-world situations where movements are more un-
predictable.

Table 2 show a comparison of both systems. The
old system is limited to 15 fps due to its camera setup,
which affects its GPU performance. In contrast, the
new system does not have this limitation, allowing it to
achieve higher performance on a GPU.

However, the new system’s performance is signifi-
cantly impacted by the need to process two images si-
multaneously, rather than one. This impact is evident

Hardware Old System FPS New System FPS
CPU 15 10
GPU 15 20

Table 2: FPS Comparison of Systems

when running on a CPU, where the old system outper-
forms the new one. This means that if we used the old
system with the new camera hardware, it would outper-
form the new system in terms of speed.

4 Conclusion

This paper explored the application of stereo vision and
deep learning techniques to enhance the gaming ex-
perience. By leveraging stereo vision combined with
deep learning object detection, we developed a cost-
effective system capable of tracking human movement
in a 3D coordinate system.

Our approach integrates stereo vision technology
with a deep learning model to detect and track person
landmarks in real time. We addressed initial hardware
limitations by transitioning to more suitable compo-
nents, such as the Powerton Universal Webcam, which
provides the image quality and frame rates necessary
for accurate and responsive game control.

A comprehensive calibration process involving both
intrinsic and extrinsic stereo calibrations ensures the
precision of our 3D positioning system. Intrinsic cal-
ibration determines the internal parameters of each
camera, while extrinsic calibration determines the rel-
ative position and orientation of the cameras, which
is essential for accurate position triangulation in 3D
space.

For object recognition, specifically identifying peo-
ple and hands in the image, we utilized the Python li-
brary MediaPipe, which includes several deep-learning
models for recognizing different objects. We applied
our system to the Google Dino game, controlling a
jumping dinosaur by moving a finger up and down. Our
system demonstrated a significant i mprovement over
the previous version, with fewer false jumps.

For performance comparison, we configured both
systems for person detection and recorded the number
of false jumps over 100 jumps. The results demon-
strated that the new system is superior, achieving a 6%
false jump rate compared to the old system’s 29% false
jump rate.

However, we observed a performance issue when us-
ing the system with a CPU instead of a GPU, result-
ing in slow jump responses. This problem is mitigated
when running the system on a GPU.
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