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Abstract. The formal semantics of programming
languages forms the basis for many other formal
methods used in software engineering. Its role is
primarily in finding the meanings of programs and
language constructs and in verifying the correctness
of the design and implementation by means of formal
procedures. Formal semantics has an irreplaceable
place in the curricula of computer science and related
fields of most universities. Its study requires a certain
knowledge of mathematics and formal principles,
therefore one of the results of our research is the
visualization of semantic methods, primarily for
educational purposes. In this article, we present an
overview of our results in the field of definition and
extension of semantic methods and their visualization.
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1 Introduction
Semantic methods belong to the frequently used for-
mal methods for determining the meaning of programs
written in programming languages. Individual methods
are formulated to serve some specific purposes.

The first semantic method is denotational semantics,
which defines the meaning of programs in terms of sets
and functions. This method is not interesting in the
process of program execution; it provides only the re-
sults with respect to the given input data. Therefore,
this method is appropriate in designing programming
languages. The second, very popular method is op-
erational semantics. We differentiate two operational
semantic methods. Natural semantics, which provides
the meaning of the whole statements, and structural
operational semantics, which analyzes every detail in
program execution, follows the observable behavior
of programs. The important part of structural opera-
tional semantics is abstract implementation on an ab-
stract machine. Structural operational semantics is use-
ful in the process of program implementation. There
exist other semantic methods, for instance, axiomatic
semantics, which adds preconditions and postcondi-

tions to each statement. These formulas serve to prove
partial correctness of programs. Algebraic semantics
specifies programs as abstract data types and models
them as heterogeneous algebras. All these methods are
included in the course Semantics of Programming Lan-
guages for graduate students.

In the following text, we present the related research
and resources and we sketch the structure of the paper.
Categories are very useful mathematical structures for
modeling the programs and defining their categorical
semantics. Categorical semantics of programs is in the
literature oriented mostly on functional programming
paradigm, for instance, (Hyland and Ong, 2000), but
our approach is for the imperative paradigm modeled
by category of states. We defined denotational cate-
gorical semantics for imperative languages and we ex-
tended it also for procedures (Steingartner et al., 2017).
Another categorical structure we defined for structural
operational semantics is coalgebra (Steingartner et al.,
2020). We followed the ideas published in the book
(Jacobs, 2016). The results of both models we ex-
plained in Section 2 (denotational semantics) and in
Section 3 (operational semantics).

Because graphical illustration of semantics is easy
to understand for students, our further work was to pre-
pare visualization software appropriate for the teaching
process. We were inspired by the work (Hannan and
Miller, 1990) and we used the tool ANTLR 4 (Parr,
2013) as a very strong and useful software for our pur-
poses. Our results (Steingartner et al., 2019; Stein-
gartner, 2020; Steingartner and Sivý, 2023) are shortly
characterized in Section 4.

Our results in semantic methods we applied in other
languages as concatenative/compositional languages
and domain-specific languages. Using (Herzberg and
Reichert, 2009) we defined semantics for a simple
compositional language KKJ (published in (Mihelič
et al., 2021)). During the last decades, a new kind
of programming languages, domain-specific languages
were developed. We included in our course a sim-
ple domain-specific language Robot (Horpácsi and
Kőszegi, 2015) and we showed how the semantics
of such languages can be defined (Steingartner and
Novitzká, 2021; Steingartner et al., 2022). Our results
we sum up in Section 5. Section 6 concludes our paper.
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Figure 1: A compound morphism for a sequence of
commands

2 Categorical semantics
A very useful mathematical structure for modeling
programs and defining their semantics is a category.
Therefore, our research focused on the use of cate-
gories for defining semantics.

We worked with imperative and procedural lan-
guages, where the essential concept is a state. The state
is considered as an abstract model of computer mem-
ory which is independent from the real architecture and
allows to view the changes in computer memory in a
formal way. We define a state s as a function

s : Var× Level ⇀ Value,

where Var is a set of variables, Level expresses nest-
ing level and Value is the set of integers together with
undefined value ⊥. Each state is then a list of triples,
where xi are variables, l is the nesting level and v is a
value of a variable of the given level:

s = ⟨((x1, 1) , v1) , . . . , ((xn, l) , vn)⟩ .

States are the objects of our model, the category of
states. Each variable of a program needs to be declared.
A declaration var x is modeled as an endomorfism on
a given state s and it adds a new triple to a given state:

[[var x]] : s → s.

The statements are modeled as category morphisms –
for a statement S, we have

[[S]] : s → s′.

It expresses a change of state induced by execution
of S. In such way, we defined denotational seman-
tics (Steingartner et al., 2017), where we constructed
a category of states and defined commands of a simple
imperative language using morphisms.

For illustration, in Fig. 1, we show the semantics of
compound statement S1;S2. We also consider block
structure of our language. A block can contain decla-
rations and statements. Here, the nesting level is incre-
mented within entry to a block and the locally declared

s0

s1

Jvar yK

Jvar xK

Jx := 1K

s2
Jinp

ut
yK

Jvar xK

s3

Jx := 5K

s4

Jy := y − xK
s5

JdelK
s6

Jy := y + xK

CState

Figure 2: The path of execution P1

variables are forgotten at the end of a block:

[[begin D;S end]]s =
[[del]] ◦ [[S]] ◦ [[D]](s ⋄ ⟨((begin, l + 1) ,⊥)⟩),

where the keywords begin and end serve as fictive
variables and del is a function releasing all declaration
on the level l + 1, for l ∈ N0.

The semantics of a program is then a path in the cat-
egory of states, as it is illustrated in Fig. 2 (for the
Listing 1).

Listing 1: Program P1 with nested block

var x;
var y;
x := 1;
input y;
begin

var x;
x:=5;
y:=y+x;

end;
y:=y-x

We extended the simple procedural language with
procedures to the procedural language and constructed
a collection of state categories that are linked using
functors for calling the procedure and returning to the
calling subroutine. The advantage of our approach is
the possibility of multiple procedure calls and the use
of recursive calls (Figure 3).

Categories allow a graphical representation of pro-
gram execution, which inspired us to introduce graph-
ical visualization of semantics into the teaching pro-
cess. Categorical structures are quite difficult for stu-
dents studying technical sciences because they require
quite deep knowledge of mathematics, so we tried to
visualize the definition of the traditional approach to
defining and visualizing semantics.
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Figure 3: Categorical interpretation of recursive calls

3 Categorical operational semantics

The second semantic method, which we modeled with
the help of categories, was structural operational se-
mantics, which provides an overview of the detailed
steps of the executed program, that is, it describes
the behavior of the program. We extended the simple
programming language with input and output blocks
and commands, which required the construction of an-
other categorical structure, a category of configurations
whose objects are lists of commands, states, inputs and
outputs (Steingartner et al., 2020). The commands of
the language are modeled by morphisms (Figure 4).

Operational semantics provides behavior of pro-
grams, that is, it considers every detail in program ex-
ecution. The best categorical structure, which is ap-
propriate for this purpose, is a coalgebra. Coalgebra is
defined as a polynomial endofunctor over state space,
here over a base category. Every application of this
functor expresses one step of program execution. To
construct coalgebra for our purposes, we need to con-
struct base category as a category of configurations. A
configuration is a tuple

config = (JD∗;S∗K,m, i∗, o∗),

where m is actual memory, i∗ and o∗ are lists of in-
put and output values, respectively. The set Config
of configuration is our state space. The morphisms of
the base category are the transition operations JnextK
for statements, JreadK and JprintK for input and output
statements, resp. Now we have the base category that is

config0
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config4

config5
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Figure 4: Semantics of program P2 in coalgebra

a model of our simple language Jane; thus we can pro-
ceed to construct a coalgebra modeling the behavior of
programs written in Jane. The objects of our category
form the state space of a coalgebra and the morphisms
are the transition mappings. Hence, we construct the
polynomial endofunctor for this kind of systems

Q(Config) = 1+Config+O×Config+ConfigI .

Here I ⊆ Value denotes the domain of input values
and O ⊆ Value denotes the domain of output val-
ues of the program execution. The operation + in the
definition of the functor Q expresses distinct, mutual
exclusive results of the functor.

In Fig. 4, we show the semantics of the following
program (Listing 2):

Listing 2: Program P2

var x; var y;
read x; read y;
if x <= y then begin

var z;
z:=x; x:=y; y:=z

end
else skip;
print x

4 Visualization of traditional se-
mantic methods

The mentioned modules were solved within the KEGA
educational projects and are gradually being introduced
into the teaching process. The advantage is that they
can serve as an illustrative aid for the teacher, either in
lectures or exercises. In addition, they allow students to
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individually practice the relevant issue and alert them
to the mistakes they make when defining semantics.
The modules work in interactive mode, that means that
the student defines the semantics step by step, or en-
ters a program and the module returns the semantics
of the program. The response from students is very
positive. This process can be considered as some pre-
evaluation of our software. We observe how the stu-
dents understand the principles of individual seman-
tic methods faster and understand their principles more
deeply than is the case with the classic definition of se-
mantics on the blackboard or in a notebook.

4.1 Natural semantics
Natural semantics is one of the methods of operational
semantics. This method is used quite often in prac-
tice when deriving the properties of languages and pro-
grams written in specific languages. It is also a use-
ful method for designing compilers. Its principle is
that the meaning of the program is constructed using
derivation trees of natural semantics, where in indi-
vidual nodes there are transition relations expressing
changes in memory states (abstract expression of com-
puter memory) as follows:

⟨S, s⟩ → s′

where S represents a statement and s, s′ stand for
memory states.

The software module for the visualization of natural
semantics (Figure 5, presented in (Steingartner et al.,
2019)) works on the principle of translating the input
program in the Jane language into tokens, with the help
of which a derivation tree of natural semantics is sub-
sequently generated. In the core of the application is
a standard simple compiler working with the grammar
of the Jane language. The compiler includes standard
phases (lexical analysis, syntactic analysis, semantic
analysis and target code generation – here in the form
of tokens for derivation tree rendering). The module
allows to input the program manually or load it from a
file. Then the next step is setting the values of variables
in the program. After compilation program performs
the visualization of semantic evaluation applying the
particular rules. The result provided (when the input
program was correct) is then a derivation tree for nat-
ural semantics and the table with all states during the
program execution. User can save the results for later
use in graphical and textual form: program provides
a cropped image containing the drawn derivation tree
and LATEX source for this tree.

4.2 Structural operational semantics
Structural operational semantics is a very popular se-
mantic method that models each step of program exe-
cution based on transitive relations. Transition sessions
can take place in two forms (depending on the result of

the calculation) – either the result is a simple state or
the next step (next configuration) in the computation:

⟨S, s⟩ ⇒ s′, or ⟨S, s⟩ ⇒ ⟨S′, s′⟩.

For defining the grammar and parser construction, the
ANTLR tool (Parr, 2013) with a great success was
used. After providing the input sequence of statements
and the initial state of variables, a parsing of the input
code starts. Compilation provides errors if the input
code is not correct. Otherwise, a parse tree is created.
After the correct input, a new instance of SOSGramm-
marVisitor class and the MainSequence class are cre-
ated. So the first step is to obtain a sequence of state-
ments and process them using the appropriate compi-
lation (and semantic) rules. After obtaining the nec-
essary objects, a derivation sequence is created based
on the rules of structural operational semantics and the
visualization is ready to be performed.

When a user launches the emulation (visualization)
process, lexical and syntax analysis are performed. The
result of a computation is provided and displayed as the
whole computational sequence. User then can choose a
mode of visualization: either the whole computation at
once with final results or the step-wise emulation with
showing all changes of states (and variables). At the
end, user is allowed to store the work done: the whole
output as a complete report (in one document), or only
the state table, or the output computational sequence as
a source code for LATEX. Software module is depicted
in Figure 6.

4.3 Abstract machine
Obviously, operational semantics is used to specify the
meaning of programs and abstract machines to pro-
vide an intermediate representation of the language’s
implementation. Operational semantics can be pre-
sented as inference rules or, equivalently, as formulas
in a weak meta-logic permitting quantification at first-
order and second-order types. Abstract machines can
be presented as rewrite rules describing single-step op-
erations on the state of a computation. Such specifica-
tions provide an intermediate level of representation for
many practical implementations of programming lan-
guages (Hannan and Miller, 1990).

For the complete visualization of particular pro-
cesses of the abstract machine for the operational se-
mantics, an emulator of abstract machine was devel-
oped (Steingartner and Sivý, 2023). Our visualization
tool implementation fulfills several tasks. In its final
form, it forms a tool accessible through a web browser,
which is capable of processing various types of input,
compilation (translation into tokens), subsequent visu-
alization of program execution and exporting visualiza-
tion results in various formats (Fig. 7). The implemen-
tation also includes a separate compiler executable via
the command line, which is capable of output in var-
ious formats and is also capable of interpreting input

528_____________________________________________________________________________________________________Proceedings of the Central European Conference on Information and Intelligent Systems

 
34th CECIIS, September 20-22, 2023
_____________________________________________________________________________________________________  

Dubrovnik, Croatia



Figure 5: A look at the Natural Semantics Visualizer

programs. The entire tool is conceptually divided into
three packages: the editor, which serves to process user
input, the compiler, and the visualization tool itself.

4.4 Denotational semantics
The tool for denotational semantics is currently under
development. The specificity of the design and devel-
opment of the tool for denotational semantics results
from the nature of the given method. Denotational, also
called mathematical semantics, is a semantics that ex-
presses the meaning of programs using mathematical
objects (numbers, expressions and functions) and their
composition. The main idea is that for a given pro-
gram we construct a mathematical function that gives
the same results as the given program (regardless of the
order of individual steps in the program; of course, it is
a function on states).

For simple statements and for the conditional state-
ment pattern, the implementation is fairly straightfor-
ward. However, the challenge is the implementation of
the denotation of the loop statement, for which in prac-
tice we construct a functional (a higher-order function)
and then search for this functional’s least fixed point,
which expresses the meaning (denotation) of the loop
statement.

It is obvious that for educational purposes automa-
tion of selected patterns of solving a fixed point of the

functional appears to be a suitable solution, of course
in interactive mode.

The development and methodology itself differ only
little from the development of previous modules. Also
in this case, thanks to the ANTLR tool, a grammar for
input processing (Jane programs) is constructed. The
compiler reads and translates the input program and de-
composes it into a sequence of tokens, thanks to which
it is possible to visualize calculations in denotational
semantics. After completion, we plan to deploy the
tool itself in the same way as the previously mentioned
programs.

5 Extension of semantic methods
for other languages

In addition to the application and extension of seman-
tic methods in the area of the imperative paradigm, we
further focused on the use of semantic methods also for
languages from other paradigms. We focused on con-
catenative (or compositional) languages, which have
the character of stack-based languages (Sec. 5.1). The
very nature of domain-specific languages makes it pos-
sible to explore many of their interesting properties, in-
cluding from the point of view of formal semantics, so
we focused our efforts in research further in this direc-
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Figure 6: A module for the structural operational semantics

tion (Sec. 5.2).

5.1 Semantics of compositional languages
Another area we focused on was concatenative (stack-
based) languages, which demonstrate to students that
semantic methods are also suitable for other program-
ming languages.

We have extended our research in the field of for-
mal semantics of programming languages to the field
of concatenative languages. This group of languages
usually belongs to the functional paradigm (Herzberg
and Reichert, 2009).

The name of this group of languages is derived from
the property that the syntactic chaining (concatenation)
of programs corresponds to the semantic composition
of functions. The paradigm of concatenative languages
is suitable for research into the fundamentals of soft-
ware engineering and appears to be a suitable founda-
tion for the future of programming.

We present a simple programming language KKJ,
which contains a small set of language constructions,
but offers a flexible and useful environment for pro-
gramming. The development of the language and re-
search related to its properties and semantics takes
place in cooperation with the University of Ljubljana
(Mihelič et al., 2021).

Thanks to its simplicity, the language provides sev-
eral possibilities, for example, a clear definition of se-
mantics, the possibility of direct development of an in-
terpreter, the design of tools for analyzing programs for
the purpose of optimization or verification, etc.

To describe the syntax of expressions E ∈ Expr
in the programming language KKJ, we use the well-
known BNF-notation:

E ::= ε | i | n | {E} | E E.

Here, ε stands for an empty expression, a numeral i ∈
IntNum and a name n ∈ Name are considered as
expressions as well. As an example of calculations in
this language, we show in Fig. 8 an evaluation of the
program

J14 {dup dup} {add add} compose applyK s

in particular steps.
The attentive reader will quickly realize that it is a

calculation of the value of the expression 3× 14.

5.2 Semantics of domain-specific languages
The latest contribution to the teaching of semantic
methods is the definition of the semantics of domain-
specific languages, which represent the modern trend
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Figure 7: Window containing a visualization of abstract machine

Figure 8: Step-wise evaluation of the calculation in KKJ language

in the development of programming languages. For
teaching, we chose a simple domain-specific language
for moving the robot along a rectangular grid (Figure
9).

Figure 9: Visualization of robot movement in a grid

The language is quite easy itself. The structure of

directions is defined by the production rule:

d ::= left | right | up | down

and we define the structure of statements as follows:

S ::= d | d n | reset | skip | S;S,
where

• D n expresses n-steps of movement in given direc-
tion;

• reset defines movement to starting position;

• skip is the empty statement;

• S;S is sequence of statements.

The second version of this language, which is closer
to real languages, has the following syntax.

S ::= turn left | turn right | forward
forward n | reset | skip | S;S.

We explored and refined the definition of its denota-
tional and structural operational semantics (formulated
in (Horpácsi and Kőszegi, 2015)) and defined natural
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semantics (Steingartner and Novitzká, 2021) and the
first version of abstract machine for structural opera-
tional semantics (Steingartner et al., 2022) and thereby
again showed students that semantic methods are appli-
cable to such languages. An example of computation
on an abstract machine is in Figure 10.

Figure 10: Example of computation on an abstract ma-
chine

Currently, we are extending this robot language with
additional commands that allow to bypass the obsta-
cle in the path of the robot and determine the size of
the grid. Adding this problem to the language requires
defining new commands (conditional, loop) so that the
robot moves on a grid of a fixed size and knows how
to avoid obstacles. A possible promising extension for
the future is the addition of a third dimension in an or-
thogonal grid, allowing for semantic modeling of drone
movement in space.

6 Conclusion

In this article, we presented the most important re-
sults of our research in the field of semantic methods.
In our research, we extended the set of traditional se-
mantic methods for imperative languages by two meth-
ods based on category theory, which were very posi-
tively received by students. Despite their mathematical
nature, the categories are also positively received by
students with a technical focus (with less mathemati-
cal background) due to their illustrative and expressive
power. In our research, we further dealt with the exten-
sion of traditional methods for some other paradigms
of languages, specifically for selected domain-specific
languages and for concatenative (stack-oriented) lan-
guages. As a big positive, students receive software
support for visualization and interactive processing of
calculations using selected semantic methods. Hereby,
we have presented a comprehensive view of research
in the field of semantic methods and semantic model-
ing, as well as making them available to students in an
interesting and interactive form.
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O., editors, New Trends in Database and Informa-
tion Systems, pages 181–192, Cham. Springer Inter-
national Publishing.

Steingartner, W., Novitzká, V., Bačíková, M., and Š.
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