
Towards Automated Detection of Qualitative Spreadsheet

Errors in Multi-user Environments

Miro Zdilar

University of Zagreb

Faculty of Organization and Informatics

Pavlinska 2, 42000 Varaždin, Croatia

miro.zdilar@gmail.com

Abstract. Spreadsheets are one of the most used

software systems in business and academia. Since the

first introduction of electronic spreadsheets for

personal computers in 1979, they have evolved into a

powerful computing platform. Their use spans from
asset administration to complex scientific analysis and

process modelling. However, spreadsheets are

associated with high incidence of errors, causing

companies and organizations significant reputational

and financial losses. The goal of this work-in-progress

article is to present a model for an automated detection

of qualitative spreadsheet errors in multi-user

environments, based on abstract state machines.

Keywords. Spreadsheets, Spreadsheet Errors,

Automated Error Detection, Qualitative Spreadsheet

Errors in Multi-User Environments, Spreadsheet

Quality Assurance

1 Introduction

Spreadsheets are widely used and can be considered as

one of the most successful end-user programming

systems. End-user programming systems allow end-

users to build and execute powerful computer

programs without the use of traditional programming

languages and supporting development tools. It has

been estimated that the number of end-user

programmers outnumber traditional software

programmers (Scaffidi et al., 2005). Spreadsheets are
used in almost all companies in the US and Europe for

financial reporting and strategic planning (Panko &

Ordway, 2008). The framework for the identification

of spreadsheet usage patterns (Reschenhofer &

Matthes, 2015) identified use cases for the following

business processes; capacity planning, financial

reporting, stakeholder analysis, risk management,

performance calculation, data transformation, cash-

flows analysis, time-series transformations, and

simulations. Despite their great success and

importance, spreadsheets are known to be error prone
(Rajalingham et al., 2000). The European Spreadsheet

Risk Interest Group (EuSpRIG), a non-profit and

voluntary organization, maintains a list of horror

stories that illustrate problems with uncontrolled usage

of spreadsheets (European Spreadsheet Risk Interest

Group, 2023).
This work-in-progress article presents a model for

automated detection of qualitative spreadsheet errors in

multi-user environments. According to taxonomy of

spreadsheet errors (Rajalingham et al., 2008),

qualitative errors do not immediately produce incorrect

values but degrade the quality of the spreadsheet.

Spreadsheet also becomes more prone to

misinterpretation and more difficult to maintain. The

rest of this paper is organized as follows. Section 2 is a

short overview of related work with the problem

statement in section 3. Afterwards, in section 4, the

architecture of the proposed model for automated
detection of qualitative spreadsheet errors in multi-user

environments is presented. In section 5 we provide

initial results of presented model simulations. Finally,

in section 6 we discuss results and provide directions

for further model evaluation and future research.

2 Related Work

2.1 Taxonomy of Spreadsheet Errors

Omnipresence of spreadsheets and impact of

spreadsheet errors triggered a significant interest of the

research community. Focus of researchers have been in

the area of detection of spreadsheet errors, as well as

identification of frameworks and methodologies that

should prevent occurrences of spreadsheet errors

(Powell et al., 2008). An important aspect of

spreadsheet research deals with the development of

taxonomies for spreadsheet errors.
Early studies listed types of errors detected without

a classification of spreadsheet errors (Brown & Gould,

1987). Galetta et al. (1993) introduced two classes of

spreadsheet errors. The authors distinguished between

domain errors and device errors. Domain refers to the

spreadsheet's application area (e.g., accounting), while

Proceedings of the Central European Conference on Information and Intelligent Systems___419

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

device refers to the spreadsheet technology itself.

Authors conducted an experiment with 30 accounting

experts and 30 students to seek up to two errors

introduced in each of six provided spreadsheets used

during the experiment. While accounting experts

performed better in detection of domain errors,

students demonstrated comparable performance in

detection of device errors. For example, a mistake in

logic due to a misunderstanding of depreciation is a

domain error but entering the wrong reference in the
depreciation function SLN is a device error.

In one of the first attempts to offer complete

classification of errors, researchers distinguished

between quantitative and qualitative errors (Panko &

Halverson, 1996). Quantitative errors are related to the

current version of a spreadsheet, while qualitative

errors refer to risky practices that might lead to an error

in later stages of a spreadsheet’s lifecycle and degrade

the quality of the spreadsheet. Authors divided

quantitative errors into three categories:

• Mechanical errors, due to mistakes in typing or

pointing

• Logic errors, due to choosing the wrong function or

creating the wrong formula

• Omission errors, due to misinterpreting the

situation to be modelled

A more comprehensive approach to taxonomy of

spreadsheet errors is focused on user-generated errors

(Rajalingham et al., 2008). This taxonomy explicitly

distinguished between developer and end-user

generated spreadsheet errors. End-user errors are

further classified into Data Inputter and Interpreter

errors.

In recent years, researchers identified the need to

relate types and occurrences of spreadsheet errors with

quality of spreadsheets. Intuitively, a higher incidence

of spreadsheet errors suggests that the overall quality
of a spreadsheet is low. O’Beirne (2008) presented an

overview of Information Quality and Data Quality

within the context of spreadsheets. The author

presented a comprehensive list of information quality

attributes in the context of spreadsheet programs. In

addition, the author presented checks and control

procedures for spreadsheet information and quality

processes. Cunha at al. (2012) proposed a quality

model for spreadsheets with a set of domain specific

metrics for spreadsheets, which are used to measure

concrete spreadsheet characteristics. The presented

quality model for spreadsheets is based on the widely
accepted ISO/IEC 9126 international standard for

software product quality (International Organization

for Standardization, 2001). Authors provided a

comprehensive analysis of ISO/IEC 9126 standard and

map relevant quality attributes to spreadsheets.

2.2 Spreadsheet Errors Detection

High incidents of spreadsheet errors have led to a series

of research and commercial auditing tools. Nixon &

O’Hara (2010) provided a structured assessment of

several commercial auditing tools. The authors
conducted an experiment based on real spreadsheets

used for generating turnover reports in a retail

company. In total, 17 qualitative and quantitative errors

have been added to the reporting spreadsheet used for

testing 4 commercial spreadsheet auditing tools and

Microsoft Excel built-in auditing functions. Results of

the test proved that spreadsheet auditing tools are

generally useful as supporting tools for spreadsheet

experts. One commercial auditing tools achieved

detection rates of over 80%. However, results were

largely subjective and limited to only one type of a

relatively simple spreadsheet used for financial
reporting. Interesting to note is that Microsoft Excel

built-in auditing functions only scored 24%.

Another study conducted by Aurigemma & Panko

(2010) compared error detection success rate of human

expert auditors with two commercial spreadsheet static

analysis tools. The corpus of 75 spreadsheets used in

the study was created by undergraduate students in an

introductory management information system course

(Panko, 2010). The overall results indicated that human

spreadsheet auditors significantly outperformed

automated static analysis tools in the detection of
spreadsheets errors generated by humans.

Several commercial and governmental institutions

published their own spreadsheet auditing tools and

methodologies. Officers of HM Customs and Excise

have been performing field audits of taxpayers’

spreadsheet applications since 1985. Effectiveness of

HM Customs and Excise spreadsheet testing

methodology has been evaluated by Butler (2000).

This procedure is hybrid and includes manual activities

performed by an expert auditor, as well as automated

activities performed with commercial software

auditing tool. The procedure is based on the
identification of high-risk cells and formulas with

potentially high financial impact and tax losses. The

main contribution of commercial auditing tools is with

identification of high risk and complex formulas with

many dependencies to linked cells and other data

sources. Final assessment on identified high risk cells

and formulas are performed by expert human auditors

using different testing strategies such as control

checks, reviews and reperformance. This methodology

is effective for smaller to medium sized spreadsheet

models used for tax calculations and reporting.
An automated method to infer data types from a

spreadsheet was presented by Erwig & Burnett (2002).

The proposed method for inferring types from

spreadsheets is based on the concrete notion of units

instead of the abstract concept of types. Authors used

header information given by spreadsheets to derive

units. In continuation to the presented concept around

units, Ahmad et al. (2003) developed a type system for

statically detecting spreadsheet errors. Author named

420___Proceedings of the Central European Conference on Information and Intelligent Systems

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

the proposed type system for spreadsheets “unit

checking”. The same researchers also presented a

collection of rules for the identification of spreadsheet

weaknesses that are likely to be errors. The presented

type system for spreadsheets also relies on the concept

of the header that defines common unit for groups of

cells.

Jannach et al. (2014) conducted comprehensive

literature review and proposed two main categories of

automated spreadsheet quality assurance approaches:

• “Finding and fixing errors” is about techniques and

tools that are mainly designed to help the user

detect errors and understand the reasons for the

errors.

• “Avoiding Errors” is about techniques and tools

that should help developer create error free

spreadsheets.

In addition to research related to manual and

automated spreadsheet quality assurance, important to

note is research related to the automation of

spreadsheet testing (Abraham & Erwig, 2008). Modern
approaches to spreadsheet development follow good

practices and methodologies for software development

life cycle and the automation of spreadsheet testing is

valuable both for researchers and industry

practitioners. To minimise bias and ensure validity of

test cases, the authors developed mutation operators for

spreadsheets. Authors followed original concepts of

mutation testing developed for general purpose

programming languages.

Recent research and studies are focused on the

application of large language models to spreadsheet

environments. A team of researchers from Microsoft
Corporation presented the FLAME language model for

spreadsheet formulas (Joshi et al., 2023). FLAME uses

the Microsoft Excel specific formula tokenizer and

other techniques to achieve competitive performance

with a substantially smaller model (60 million

parameters) and two order of magnitude less training

data, compared to other large language models such as

Codex. Researchers used a training dataset of 972

million formulas extracted from a corpus of 1,8 million

Excel workbooks. FLAME was evaluated on three

different tasks for Excel formulas: last-mile repair,
autocompletion and syntax reconstruction. Syntax

reconstruction is a novel term coined by the authors of

FLAME, and the goal of this task is to reconstruct

original Excel formula from formulas with removed

delimiters. The presented FLAME language model

outperforms larger language models, such as Codex-

Davinci (175 billion parameters), Codex-Cushman (12

billion parameters), and CodeT5 (220 million

parameters), in 6 out of 10 experimental settings.

3 Problem Statement

Our proposed model for automated detection of

qualitative spreadsheet errors in multi-user

environments will address the following spreadsheet

errors:

• Noncompliance and deviations from spreadsheet

development guidelines (Esch et al. 2010).

• Unauthorized changes and modifications to

spreadsheet programs and data during all stages of

a spreadsheet’s lifecycle.

Proposed model for automated detection of

qualitative spreadsheet errors in multi-user

environments, falls into both categories of automated
spreadsheet quality assurance approaches developed

by Jannach et al. (2014). It allows users to find

qualitative spreadsheet errors as well assists

spreadsheet developers in creation of error free

spreadsheets.

Qualitative spreadsheet errors are difficult to

identify and troubleshoot in multi-user environments

due to frequent organizational changes in users’

authorizations and complex development standards

with codified rules for spreadsheet development. In the

following we list a few practical examples of
qualitative spreadsheet errors according to guidelines

for the development and validation of spreadsheets

(Esch et al. 2010):

• String literals has been entered for nominal volume

in input worksheet. Guidelines for the development

require that only numerical values are allowed for

nominal volume.

• Inventory number of the asset is not visible on

screen and on the print-out. Guidelines for the

development require that inventory asset number is

visible on screen and on print-out.

• Additional sample numbers have been added to

input worksheet and validation range was

overwritten. Guidelines for the development

require that only limited number of sample

numbers are allowed in input worksheet according

to predefined range of input values.

• Calculation for sample standard deviation was

changed by unauthorized spreadsheet end user.

Guidelines for the development require that

changes to calculations are performed only by

authorized users.

4 Model Architecture

Bellow we provide a conceptual model for automated

detection of qualitative spreadsheet errors in multi-user

environments based on the application of Abstract

State Machines (ASM) (Gurevich, 2000). The

following notation is used to describe data flow and

interaction between model components and

spreadsheet users:

• Si: State of spreadsheet at time i

• ASi: State of ASM at time i

• 𝐵𝑈𝑛: Behaviours B of user Un

Proceedings of the Central European Conference on Information and Intelligent Systems___421

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

• ∆𝑆𝑖(𝐵𝑈𝑛): Spreadsheet state transitions between

state Si and state Si-1, caused by behaviours B of user

Un

• Se: Final state of spreadsheet (end of spreadsheet

lifecycle)

The core idea for the proposed model for automated

detection of spreadsheet errors is based on equivalence

between different lifecycle states of a spreadsheet

program and the corresponding automatically

synthesized ASM. As depicted visually in Figure 1, the
state of spreadsheet S corresponds to an equivalent

state of ASM AS. During the lifecycle, a spreadsheet

might transition through m transitions to reach state Si.

The corresponding ASM should follow state

transitions of spreadsheet Si to reach state ASi.

Figure 1. Spreadsheet and ASM state equivalence

Using the same notation, spreadsheet stages during

different phases of the lifecycle are modelled by a finite

sequence of state transitions as follows:

𝑆0
∆𝑆0(𝐵𝑈𝑛)
→ 𝑆1

∆𝑆1(𝐵𝑈𝑛)
→ 𝑆2

∆𝑆2(𝐵𝑈𝑛)
→ …𝑆𝑒 (1)

Where S0 is the initial state of the spreadsheet (“first

creation”) and Se is the final state of spreadsheet (“end

of lifecycle”). ∆𝑆𝑖(𝐵𝑈𝑛) are transitions between

spreadsheet states caused by behaviours B of user Un.

When required by the spreadsheet user, at each state of

Si where i ∈ {0,1,2,..,e}, the equivalent state ASi for

ASM is synthesized in order to determine ∆𝑆𝑖−1(𝐵𝑈𝑛).

Figure 2 illustrates a high-level component diagram

and interaction of users for presented conceptual
model.

Data processing within proposed model for

automated detection of qualitative spreadsheet errors is

performed in three consecutive steps. During first step,

spreadsheet submitted by user as input to proposed

model is parsed with dedicated parser structured

around spreadsheet formula language grammar. We

implemented a spreadsheet parser in Python 3

programming language (Van Rossum & Drake, 2009).

We utilized the OpenPyXL library for manipulating

spreadsheet files and the Tokenizer module for
tokenizing spreadsheet formulae (Zumstein, 2021). As

a result of successful spreadsheet parsing, a directed

graph is generated with hierarchical representation of

all resources that constitute the input spreadsheet.

During second step, based on graph representation of

spreadsheet, abstract state machine is generated.

Structure and properties of graph components in

synthesized abstract state machine are determined with

constitutive elements of spreadsheet programs parsed

during the first step of data processing. During the third

step of data processing within proposed model,

synthesized abstract state machine are explored to

detect structures that correspond to spreadsheet errors.

We utilized the NetworkX python library (Hagberg et

al. 2008) to generate and query a directed graph with
the representation of the abstract state machine and

associated transition states.

Figure 2. High-level conceptual model

5 Model Evaluation

As this research is work-in-progress, we explore

following initial research question:

• RQ: How does the proposed model perform in

detection of unauthorized spreadsheet changes

performed by spreadsheet users?

To evaluate research question, we randomly

assigned different user roles to 15 experienced

spreadsheet users. Details of designed user roles and
permissions are listed in Table 1.

We created an initial error free spreadsheet

template with a sales report for 10 markets and 5

products. Input data was presented in the INPUT

worksheet. A model to calculate total sales per product

and per market was developed in the MODEL

worksheet. Results were presented in the OUTPUT

worksheet with references to the calculated model. The

TESTING worksheet had a simple testing procedure

and empty named ranges to assist the Tester with

documenting the performed testing. This initial
spreadsheet template was used to generate an

422___Proceedings of the Central European Conference on Information and Intelligent Systems

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

equivalent abstract state machine representation with

proposed model for automated detection of qualitative

spreadsheet errors.

Table 1. Assigned spreadsheet user roles and

permissions

User role Permissions

Developer

1. Create and modify all resources in

MODEL worksheet.
2. Utilizes all data from INPUT

worksheets.

3. Create and format results in

OUTPUT worksheet.

Tester
1. Create and modify all resources in

TESTING worksheet.

Data

Inputter

1. Modify cell values in INPUT

worksheet.

Owner

1. Modify cell values in INPUT

worksheet.

2. Modify named ranges in all

worksheets.

Without informing the 15 expert spreadsheet users

about their roles, we requested them to document and
perform 7 different changes in the given spreadsheet

template that corresponds to permissions listed in

Table 1. Based on spreadsheets provided by expert

participants, we generated corresponding abstract state

machines with our proposed model. In order to identify

changes performed by users we queried all edges of the

synthesized abstract state machines. Edges in graph

representation of abstract state machines represents

state transitions and, in our model, corresponds to

changes and modifications to spreadsheets performed

by users. We compared results of graph queries and
detected graph changes with assigned users’ roles and

list of actual changes performed by spreadsheet users.

Our model correctly identified all changes and

modifications performed by spreadsheet users.

Dictionaries generated as the result of query with

NetworkX python package were complex and difficult

to analyse, and we utilized a simple script to transform

them into tabular format. In addition, we manually

reviewed all query result in tabular format with

participating spreadsheet experts. Even though format

of generated queries is difficult to interpret by human

reviewers, our model and corresponding abstract state
machines correctly detected all changes introduced by

spreadsheet users.

6 Conclusion and Future Research

In this paper we have presented initial evaluations of

our model for automated detection of qualitative

spreadsheet errors. We developed the presented model

with the goal to address specific classes of spreadsheet

qualitative errors that are difficult to detect in multi-

user environments. As this research is work-in-

progress, our initial evaluations are limited to a smaller

population of spreadsheets and users. However,

presented results are helpful and provide valuable

insights to model capabilities.

In our future research, we will focus on

performance improvement of spreadsheet parsing and

data structures for abstract state machines

representation. We will further evaluate proposed

model in more comprehensive case studies and large
multi-user environments. We will also explore

opportunities to implement machine learning

algorithms for the detection of spreadsheet qualitative

errors in multi-user environments.

Acknowledgments

The author would like to thank Prof. dr. sc. Markus

Schatten from Artificial Intelligence Laboratory, for

valuable comments and suggestions.

References

Abraham, R., & Erwig, M. (2008). Mutation operators

for spreadsheets. IEEE Transactions on Software

Engineering, 35(1), 94-108.

Ahmad, Y., Antoniu, T., Goldwater, S., &

Krishnamurthi, S. (2003). A type system for

statically detecting spreadsheet errors. In 18th
IEEE International Conference on Automated

Software Engineering, 2003. Proceedings. (pp.

174-183). IEEE.

Aurigemma, S., & Panko, R. R. (2010). The detection

of human spreadsheet errors by humans versus

inspection (auditing) software. arXiv preprint

arXiv:1009.2785.

Brown, P.S. and Gould, J.D., (1987). An experimental

study of people creating spreadsheets. ACM

Transactions on Information Systems (TOIS), 5(3),

pp.258-272.

Butler, R. J. (2000). Is this spreadsheet a tax evader?
How HM Customs and Excise test spreadsheet

applications. In Proceedings of the 33rd Annual

Hawaii International Conference on System

Sciences (pp. 6-pp). IEEE.

Cunha, J., Fernandes, J. P., Peixoto, C., & Saraiva, J.

(2012). A quality model for spreadsheets. In 2012

Eighth International Conference on the Quality of

Information and Communications Technology (pp.

231-236). IEEE.

Erwig, M., & Burnett, M. (2002). Adding apples and

oranges. In PADL (Vol. 2, pp. 173-191).

Esch, P. M., Moor, C., Schmid, B., Albertini, S.,

Hassler, S., Donzé, G., & Saxer, H. P. (2010).

Proceedings of the Central European Conference on Information and Intelligent Systems___423

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

Good Laboratory Practice (GLP)–Guidelines for

the Development and Validation of Spreadsheets.

The Quality Assurance Journal, 13(3-4), 41-56.

European Spreadsheet Risk Interest Group. (2023).

EuSpRIG Horror Stories.

https://eusprig.org/research-info/horror-stories/

(May 30, 2023)

Galletta, D. F., Abraham, D., El Louadi, M., Lekse,

W., Pollalis, Y. A., & Sampler, J. L. (1993). An

empirical study of spreadsheet error-finding
performance. Accounting, Management and

Information Technologies, 3(2), 79-95.

Gurevich, Y. (2000). Sequential abstract state

machines capture sequential algorithms, In ACM

Transactions on Computational Logic (Vol. 1, No.

1, pp.77–111). ACM.

Hagberg, A., Swart, P., & S Chult, D. (2008).

Exploring network structure, dynamics, and

function using NetworkX (No. LA-UR-08-05495;

LA-UR-08-5495). Los Alamos National

Lab.(LANL), Los Alamos, NM (United States).

International Organization for Standardization.

(2001). Software engineering-product quality-part

1: Quality model (ISO Standard No. ISO/IEC

9126-1).

Jannach, D., Schmitz, T., Hofer, B., & Wotawa, F.

(2014). Avoiding, finding and fixing spreadsheet

errors–a survey of automated approaches for

spreadsheet qa. Journal of Systems and Software,

94, 129-150.

Joshi, H., Ebenezer, A., Cambronero, J., Gulwani, S.,

Kanade, A., Le, V., ... & Verbruggen, G. (2023).

FLAME: A small language model for spreadsheet

formulas. arXiv preprint arXiv:2301.13779.

Nixon, D., & O'Hara, M. (2010). Spreadsheet auditing

software. arXiv preprint arXiv:1001.4293.

O'Beirne, P. (2008). Information and data quality in

spreadsheets. arXiv preprint arXiv:0809.3609.

Panko, R. R. (2000). Two corpuses of spreadsheet

errors. In Proceedings of the 33rd Annual Hawaii

International Conference on System Sciences (pp.

8-pp). IEEE.

Panko, R. R., & Halverson, R. P. (1996).

Spreadsheets on trial: A survey of research on

spreadsheet risks. In Proceedings of HICSS-29:

29th Hawaii International Conference on System

Sciences (Vol. 2, pp. 326-335). IEEE.

Panko, R. R., & Ordway, N. (2008). Sarbanes-oxley:
What about all the spreadsheets?. arXiv preprint

arXiv:0804.0797.

Powell, S. G., Baker, K. R., & Lawson, B. (2008). A

critical review of the literature on spreadsheet

errors. Decision Support Systems, 46(1), 128-138.

Rajalingham, K., Chadwick, D. R., & Knight, B.

(2008). Classification of spreadsheet errors. arXiv

preprint arXiv:0805.4224.

Rajalingham, K., Chadwick, D., Knight, B., &

Edwards, D. (2000). Quality control in

spreadsheets: a software engineering-based
approach to spreadsheet development. In

Proceedings of the 33rd Annual Hawaii

International Conference on System Sciences (pp.

10-pp). IEEE.

Reschenhofer, T., & Matthes, F. (2015). A

Framework for the Identification of Spreadsheet

Usage Patterns. In ECIS.

Scaffidi C., Shaw M., Myers B. A. (2005). Estimating

the numbers of end users and end users

programmers, In Proc. of VL/HCC '05, pp. 207-

214.

Van Rossum, G., & Drake, F. L. (2009). Python 3
Reference Manual. Scotts Valley, CA:

CreateSpace.

Zumstein, F. (2021). Python for Excel: A Modern

Environment for Automation and Data Analysis

(pp. 155-179). O’Reilly Media.

424___Proceedings of the Central European Conference on Information and Intelligent Systems

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia

