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Abstract. In this research paper, we present a novel
application of image-to-image translation techniques
for fire detection applications. The focus of the study
is on translating RGB images into Near InfraRed
(NIR) images, which can serve as a preprocessing
step for fusion or other methods that benefit from
such information. The Pix2Pix model is employed
to generate NIR images from existing RGB images,
thereby adding an extra data source. The experimental
results show the ability of the model to successfully
learn the translation process, capturing the desired
characteristics in the generated NIR images. The
histograms and structural similarity index confirm
the fidelity of the translations, with an average index
value of 82.42%. The model effectively detects the
position and shape of fire in the images, although
some details on the edges may appear less prominent.
Data augmentation could be employed to enhance
the ability of the model to produce high-quality NIR
images in various scenarios.

Keywords. Computer Vision, Image Processing, Deep
Learning, Image-to-Image Translation, NIR

1 Introduction
Computer vision-based wildfire prediction and detec-
tion systems have gained significant attention and pop-
ularity in recent years (Buza and Akagic, 2022; Akagic
and Buza, 2022). The advancements in technology,
especially in the fields of machine learning and deep
learning, have enabled the analysis of large volumes of
digital images with greater accuracy and efficiency (Ša-
banović et al., 2023; Kapo et al., 2023). These systems
hold great promise for detecting and predicting wild-
fires. In this process, unmanned aerial vehicles (UAVs)
equipped with computer vision-based technology play
a crucial role in monitoring and fighting wildfires.

In recent trends of computer vision and image pro-
cessing, there is compelling evidence supporting the
idea that the inclusion of Near InfraRed (NIR) infor-
mation is beneficial for pattern recognition, as it of-

fers significant advantages in capturing a comprehen-
sive representation of a scene across various applica-
tions (Ghiass et al., 2014; Mishra et al., 2022). The
inclusion of NIR information is motivated by its abil-
ity to provide valuable insights that enhance accuracy
and utility in real-world scenarios. Unlike prevailing
methods that predominantly analyze 2D images within
the visible light spectrum (Brdjanin et al., 2020; Dard-
agan et al., 2021), which are vulnerable to variations in
environmental illumination that can degrade their per-
formance, NIR bands exhibit resilience to such fluctua-
tions, making them a valuable and reliable data source
for image processing.

The NIR data provides a promising avenue for the
development of a novel methodology aimed at ana-
lyzing multi-modal images. This innovative approach
holds the potential for augmenting accuracy in pattern
recognition within the domain of image processing. Its
efficacy is particularly pronounced in situations where
labeled training data is limited or unattainable, thereby
addressing the constraints imposed by specific regions
or circumstances. Moreover, this approach exhibits
versatility across various data sources, encompassing
satellite or Unmanned Aerial Vehicle (UAV) imagery,
which facilitates the identification of intricate patterns
and anomalies without necessitating human labeling or
intervention.

In this research paper, we introduce a pioneering ap-
plication of image-to-image translation techniques tar-
geted at fire detection. Our focus centers on the trans-
lation of initial RGB images into Near InfraRed (NIR)
images, which can serve as a preprocessing step for fu-
sion or other types of methods that can benefit for such
information. Our approach can be used to generate
NIR images from existing RGB images, thus creating
an additional source of data. The RGB and NIR data
sources can then be combined or fused to increase the
resilience of the algorithm for the increased benefit of
pattern recognition. Such algorithms can leverage sev-
eral key advantages, including heightened resilience to
variations in environmental illumination and improved
spatial resolution. These benefits facilitate the pre-
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cise identification of areas impacted by fires, thereby
enabling more efficient and timely wildfire detection.
Such advancements play a pivotal role in safeguarding
human life, preserving the environment, and mitigating
the deleterious consequences associated with wildfires.

In the context of wildfire detection, RGB-NIR data
can be particularly beneficial. It enhances the spatial
resolution of the images and allows for the differentia-
tion of vegetation types based on their reflectance pat-
terns in the NIR spectrum. This capability enables a
better identification of areas affected by flames versus
those that are not. In recent literature, there are very
limited data sources for NIR images, as opposed to the
RGB fire and/or flame images. Thus, this paper tries to
address this limitations and provide valuable insights
into generating new data sources. We believe that this
approach can be used for other applications as well.

The rest of this work is organized as follows. The
related work is provided in Section II. The proposed
method is described in section III. In Section IV, the
evaluation of the proposed method and results are de-
scribed. Finally, Section V concludes the paper.

2 Related Work
As previously mentioned, the inclusion of Near In-
fraRed (NIR) information has been shown to signif-
icantly enhance and streamline the performance of
various image processing and computer vision tasks.
This has been exemplified in several applications doc-
umented in the literature. For instance, in studies such
as (Rüfenacht et al., 2013) and (Salamati et al., 2011),
NIR information was utilized to effectively remove
shadows from images. The elimination of shadows
in images holds the potential to enhance the accuracy
and efficacy of tasks such as tracking, segmentation,
and object detection. Shadow boundaries often result
in confusion with different surfaces or objects, thus it
becomes advantageous to eliminate them entirely from
the image.

In (Brooksby et al., 2003), the authors investigate the
potential of integrating Magnetic Resonance Imaging
(MRI) and Near-Infrared (NIR) imaging modalities to
achieve noninvasive, high-resolution maps of optical
properties. In (Schaul et al., 2009) and (Feng et al.,
2013), two image dehazing approaches that leverage
the combination of color and NIR images are proposed.
In (Clarke, 2004), the authors explore two methods for
extracting process-related information from NIR mi-
croscopy data cubes. Additionally, NIR has found ap-
plications in image enhancement (Matsui et al., 2011),
image registration (Firmenichy et al., 2011), image
color restoration (Lv et al., 2022), prediction of quality
attributes (Kamruzzaman et al., 2012), and many oth-
ers.

In the context of image-to-image translation, both
NIR-to-RGB and RGB-to-NIR conversions have been
explored. The NIR-to-RGB translation has been in-

vestigated in (Dou et al., 2019), where it was applied
to face image translation. In (Sun et al., 2019), the
authors proposed a novel asymmetric cycle GAN for
NIR to RGB domain translation, specifically focusing
on NIR colorization. While (Yan et al., 2020) intro-
duced a new method for NIR-to-RGB translation, uti-
lizing a U-net based neural network to learn texture in-
formation and a CycleGAN based neural network to
extract color information. In (Shukla et al., 2022), the
authors presented a technique for high-resolution NIR
prediction from RGB images, targeting plant pheno-
typing applications. While both approaches exist, the
literature tends to have a relatively greater emphasis on
the NIR-to-RGB translation.

The RGB-to-NIR approach has gained attention in
agricultural applications for determining crop parame-
ters that are not visible to the human eye, as discussed
in (Aslahishahri et al., 2021). The authors investi-
gate image-to-image translation techniques to generate
a NIR spectral band solely from a RGB image in aerial
crop imagery. Similarly, (Sa et al., 2022) synthesize
NIR information from RGB input using a data-driven,
unsupervised approach without the need for manual an-
notations or labels. Their focus is on enhancing the sys-
tem for fruit detection. (Yuan et al., 2020) explore the
use of a conditional Generative Adversarial Network
(cGAN) structure to generate a NIR spectral band con-
ditioned on the input RGB image. (Ciprián-Sánchez
et al., 2021) provides a quantitative demonstration of
the feasibility of applying deep learning-based fusion
methods to infrared imagery from wildfires. They in-
troduce a novel artificial IR and fused image generator
called FIRe-GAN. The goal of this method is to fuse
RGB with NIR information while trying to preserve the
consistent color.

The goal of this paper is to find a way to translate an
RGB image and generate a corresponding NIR image
as output. An inference module is created to generate a
domain image-to-image translation, e.g. translation of
RGB to NIR images.

2.1 Image-to-image Translation

Image-to-image translation refers to a task of convert-
ing an input image from one domain to a different do-
main image while preserving its essential content. In
the case of RGB to NIR image translation, the goal is
to transform an RGB image into its corresponding NIR
representation. RGB images are composed of three
color channels: red, green, and blue, which are visi-
ble to the human eye. On the other hand, NIR images
capture light in the near-infrared spectrum, which is be-
yond the range of human vision.

In recent literature, image-to-image translation tech-
niques are often based on deep learning models like
generative adversarial networks or variational autoen-
coders (VAEs) (Liu et al., 2017; Zhu et al., 2017; Pang
et al., 2021). For training a model, a dataset that con-
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Figure 1: An example configuration of Pix2Pix as is used in our experiments.

tains pairs of aligned RGB and NIR images is required.
The model is trained to minimize the difference be-
tween the generated NIR images and the ground truth
NIR images in the dataset. This enables the model to
learn the underlying patterns and correlations between
RGB and NIR images, allowing it to generate plausible
NIR representations when given an RGB input during
the testing phase.

In our case, the tranformation from RGB to NIR im-
age is approximated by a conditional generative adver-
sarial network, which is introduced in the following
section. This transformation is highly nonlinear which
stems from many factors, such as lighting sources, sur-
face reflections, intristic and extrinsic camera charac-
teristics. Here, the challenge is to estimate the global
optimal solution that guarantees convergence.

2.2 Pix2Pix Generative Adversarial Net-
work

In this paper, we employ an existing image-to-image
translation method known as Pix2Pix (Isola et al.,
2017). Pix2Pix is a type of cGAN, which was intro-
duced in 2017 by the researchers from Berkeley AI Re-
search (BAIR) Laboratory, UC Berkeley. It can learn
to map an input image from one domain to an output
image in a different domain. Typically, Pix2Pix uses
a paired dataset consisting of input images and their
corresponding output images, while traditional GANs
generate images from random noise. An example ap-
plications is the conversion of a black-and-white im-
age into a colored image. Ideally, the network learns
to generate realistic output images by training on these
paired examples.

Similar to a traditional GANs, the architecture of
Pix2Pix consists of two main components: a generator
and a discriminator. In Fig 1. an example configuration

of Pix2Pix is illustrated as is used in our experiments.
In this paper, we investigate the use of Pix2Pix to un-
derstand the benefits the paired images can bring to this
task. Below we briefly introduce the main components
which are used for experiments.

2.2.1 Generator

The generator takes the input RGB image and attempts
to transform it into an output NIR image. It is an
encoder-decoder model with U-Net architecture (Ron-
neberger et al., 2015). This is accomplished by first
downsampling (encoding) the input image down to a
bottleneck layer, and then upsampling (decoding) the
bottleneck representation to the size of the output im-
age. In U-Net architecture, the skip-connections are
added between the encoding layers and corresponding
decoding layers, as denoted in Fig 1. The architecture
consists of standardzed blocks of convolutional, batch
normalization, dropout, and activation layers.

During training, the generator progressively im-
proves its ability to generate realistic output images by
minimizing the difference between the generated and
real images, as perceived by the discriminator. It is
trained via the discriminator model. The goal is to min-
imize the loss predicted by the discriminator for gener-
ated images which are predicted as real images.

2.2.2 Discriminator

The discriminator’s role is to distinguish between the
generated output image and the real output image from
the dataset, thus the discriminator is trained on the real
input and generated NIR images (Ronneberger et al.,
2015; Schonfeld et al., 2020). The generator and dis-
criminator are trained in an adversarial manner via ad-
versarial loss, where the generator aims to produce out-
put images that fool the discriminator, while the dis-
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(a) (b) (c)

Figure 2: Example of images of the Corsican Fire
Database taken with a multi-spectral camera. (a) vis-
ible (RGB) image, (b) Near Infrared (NIR) image, (c)
ground truth flame pixels based on the visible image.
Ground truth images are not used in this paper, how-
ever, they are shown here as a reference of what is a
goal of detection from the original image.

criminator aims to correctly classify the real and gen-
erated images. The discriminator tries to become more
accurate in distinguishing between real and generated
images. This adversarial training process helps the
generator learn to generate output images that are vi-
sually similar to the target domain. The update of the
discriminator is unrelated to the update of the genera-
tor.

2.2.3 GAN

The generator and discriminator are connected together
to create a composite model (Creswell et al., 2018;
Goodfellow et al., 2020). Adam is used as an optimiza-
tion method, with 0.0002 as a learning rate, while bi-
nary crossentropy and mean apsolute error (MAE) are
used as loss funtions.

2.3 Dataset preparation
The Corsican Fire Database (CFDB) is used as our
dataset (Toulouse et al., 2017). The CFDB comprises
a collection of 500 visible images depicting wildfires
captured worldwide, and 95 paired images consist-
ing of visible and infrared modalities. These images
are captured under realistic outdoor conditions. They
are obtained using the JAI AD-090GE camera, which
utilizes a 2-CCD multi-spectral camera system. The
camera captures both visible and near-infrared spec-
tra (700-900 nm) using the same optical setup. Both
the visible and infrared images have dimensions of
1024 × 768 pixels. Each image in the dataset is ac-
companied by a corresponding ground-truth image.
In this paper, the ground truth images are not used.
Fig 2. illustrates some examples from the Corsican Fire
Database. The CFDB dataset is openly accessible for
research purposes.

(a) (b) (c)

Figure 3: Results of our approach: (a) original NIR
image from the CFDB, (b) generated NIR image, (c)
and their histograms.

In this paper, we use 95 paired images from the
CFDB, where 75 images are used (approximatelly
80%) during training, and the other images are used
for testing purposes (20%). The images are first loaded
and resized into a target size of 512 × 512 pixels to
prepare them as inputs to Pix2Pix architecture.

2.4 The mapping procedure

The original RGB images are three-channels images,
while NIR images are one-channel images. To learn
the mapping function between RGB and NIR, we trans-
form NIR images into three-channel images, where the
content of the original channel is just copied to oth-
ers. Then, we employ the classical Pix2Pix network
where we experiment with diffrent configurations, and
number of epochs and batch sizes. The generated im-
ages contain three channels, where information be-
tween channels differs slightly between 5-10%. To
measure the performance of our approach, the gen-
erated NIR images have to be converted to the one-
channel images. This procedure can be accomplished
with several different methods, such as by computing
the max, min, median or mean value of each pixel in
three channels and then creating the one-channel im-
ages. We experiment with these results with respect to
metrics and present the results in Section 3.

356_____________________________________________________________________________________________________Proceedings of the Central European Conference on Information and Intelligent Systems

 
34th CECIIS, September 20-22, 2023
_____________________________________________________________________________________________________  

Dubrovnik, Croatia



2.5 Metrics
The peak signal-to-noise ratio (PSNR) is used as a
quality measurement between the original and a gen-
erated image (Korhonen and You, 2012). PSNR rep-
resents a measure of the peak error. The higher the
PSNR, the better the quality of the generated image.
To define the mathematical formulation, let us assume
I and G are the original input and generated images, re-
spectively. Then, the PSNR between I and G is given
by Eq. (1).

PSNR = 10 · log10
(
I2

G

)
(1)

The Mean Squared Error (MSE) measures the aver-
age squared difference between the expected and the
generated image of a dataset (Wang and Bovik, 2009).
The lower the value of MSE, the lower the error. The
MSE between I and G is given by Eq. (2).

MSE =
1

N

N∑
i=1

(Ii −Gi)
2 (2)

The Root Mean Squared Error (RMSE) is calculated
by taking the square root of the Mean Squared Error
(MSE).

MSE and PSNR focus on measuring the absolute
differences between the predicted and true values or
the reconstructed and original images, without consid-
ering the perceptual characteristics of human vision.
They provide a quantitative assessment of the fidelity
or accuracy of the signals or images by considering the
mean squared error or the signal-to-noise ratio.

On the other hand, SSIM (Structural Similarity In-
dex) is a perception-based model that takes into ac-
count the structural information and important percep-
tual phenomena related to human vision (Wang et al.,
2004). It considers the idea that pixels in an image
are interdependent, particularly when they are spatially
close. SSIM measures the similarity between two im-
ages by assessing the perceived change in structural in-
formation, taking into consideration luminance mask-
ing and contrast masking effects. The Structural Simi-
larity Index (SSIM) is calculated as shown in Eq. (3).

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µy2 + C1)(σ2

x + σ2
y + C2)

(3)

3 Results and Discussion
The Pix2Pix model is trained from scratch using an
available open-source implementation1. The training
process consists of a fixed number of iterations, with
100 epochs and a batch size of 1. Given the presence

1Pix2Pix Github page: https://github.com/phillipi/
pix2pix

Table 1: The metrics results for test NIR images from
CFDB.

Metrics Results
PSNR 21.95
MSE 516.09

RMSE 22.72
SSIM 0.8242

of 75 images in the training dataset, each epoch com-
prises 75 iterations, resulting in a total of 7500 train-
ing steps for the entire process. During each training
step, a batch of real examples is selected as the ini-
tial step. The generator is then employed to generate
a corresponding batch of samples based on the input
source images. Subsequently, the discriminator is up-
dated using both the batch of real images and the batch
of generated samples.

Afterwards, the generator model undergoes an up-
date, wherein the real source images are used as in-
put, and the expected outputs consist of the real target
images, accompanied by class labels of 1 (indicating
real images). The loss calculation is based on these in-
puts. The generator produces two loss scores, along
with a weighted sum score. We focus on the weighted
sum score, as it is instrumental in updating the model
weights.

To monitor the training progress and ensure timely
evaluation, images are generated every 10 epochs and
subsequently compared to the corresponding expected
target images. This approach provides a means of regu-
larly assessing the advancement of the training process.
Upon completion of training, the remaining 20 images
in the test subset are utilized to generate NIR images,
which are then compared with the original images. To
gauge the quality of the generated images, four metrics
are employed for the comparison between the original
(expected) and generated images. The obtained results
are presented in Table ??.

The mapping procedure from a three-channel to a
one-channel NIR image involved determining the max-
imum, minimum, median, or mean value of each pixel
across the three channels. After evaluating the results,
it was found that the minimum function yielded the
best outcomes. Hence, the minimum function was em-
ployed to generate the final metric results. It is worth
noting that the disparity between the maximum, mini-
mum, median, and mean functions was minimal, with
variances falling within the range of 1-2%.

Fig. 3. displays a set of five original RGB images
alongside their corresponding generated NIR images,
accompanied by their respective histograms. The his-
tograms provide clear evidence that the model has ef-
fectively learned the translation process from RGB to
NIR, capturing the desired characteristics. Further-
more, the structural similarity index demonstrates a re-
markable similarity between the generated NIR images
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(a) (b) (c) (d)

Figure 4: Results of our approach on a sample of 500 CFDB RGB images with satisfactory results: (a) original
RGB image from the CFDB, and (b) generated NIR image; and with less satisfactory results: (c) original RGB
image from the CFDB, (d) generated NIR image.

and the original ones, with an average value of 82.42%.
Visual inspection confirms that the model excels in de-
tecting the position and shape of the fire to a significant
extent. However, it is worth noting that some details
on the edges of the frames appear less prominent in the
generated images.

The model was subsequently utilized to generate
NIR images from the original 500 images from the
CFDB dataset. In Fig 4., examples of both successful
and less satisfactory translations are showcased. Since
there are no corresponding original NIR images avail-
able for comparison, the evaluation is based solely on
visual assessment. From the obtained results, it is evi-
dent that images resembling the ones encountered dur-
ing training are effectively translated into their NIR
counterparts, as seen in Fig 4. in (a) and (b). How-
ever, images that exhibit a higher density of fire pixels
tend to have less satisfactory translations to their NIR
representations, as seen in Fig. 4. (c) and (d). Although
the model generally succeeds in accurately determining
the position and shape of the fire, the internal structure
appears blurred and requires additional processing.

To address this limitation, one potential approach
would involve augmenting the training subset with sim-
ilar samples and subsequently reiterating the training
procedure. By incorporating a more diverse range of
fire instances, the model can potentially improve its

ability to capture finer details and enhance the trans-
lation of images with higher fire pixel density to NIR
images.

4 Conclusion

In this paper, we demonstrate that the Pix2Pix model
can be used to successfully perform image to image
translation for the case of RGB to NIR translation. The
model demonstrated its ability to successfully trans-
late RGB images to NIR images, as evidenced by the
clear similarities observed in the histograms and the
high structural similarity index with an average value
of 82.42%. The model effectively detected the posi-
tion and shape of the fire, although some details on the
edges of the frames were less pronounced in the gener-
ated images.

Applying the model to the CFDB dataset showed
promising results for images resembling those encoun-
tered during training. The Pix2Pix model demonstrated
its potential for generating NIR images and captur-
ing key fire-related characteristics. Further refinements
and augmentations could enhance its ability to produce
high-quality NIR images in various scenarios.
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Šabanović, A., Ahmetspahić, N., Kapo, M., Buza, E.,
and Akagic, A. (2023). Early stage flame seg-
mentation with deeplabv3+ and weighted cross-
entropy. In 2023 XXIX International Conference
on Information, Communication and Automation
Technologies (ICAT), pages 1–6. IEEE.

Salamati, N., Germain, A., and Siisstrunk, S. (2011).
Removing shadows from images using color and
near-infrared. In 2011 18th IEEE International
Conference on Image Processing, pages 1713–
1716. IEEE.

Schaul, L., Fredembach, C., and Süsstrunk, S. (2009).
Color image dehazing using the near-infrared. In
2009 16th IEEE International Conference on Im-
age Processing (ICIP), pages 1629–1632. IEEE.

Schonfeld, E., Schiele, B., and Khoreva, A. (2020). A
u-net based discriminator for generative adversarial

networks. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition,
pages 8207–8216.

Shukla, A., Upadhyay, A., Sharma, M., Chinnusamy,
V., and Kumar, S. (2022). High-resolution nir
prediction from rgb images: Application to plant
phenotyping. In 2022 IEEE International Con-
ference on Image Processing (ICIP), pages 4058–
4062. IEEE.

Sun, T., Jung, C., Fu, Q., and Han, Q. (2019). Nir to rgb
domain translation using asymmetric cycle genera-
tive adversarial networks. IEEE Access, 7:112459–
112469.

Toulouse, T., Rossi, L., Campana, A., Celik, T., and
Akhloufi, M. A. (2017). Computer vision for wild-
fire research: An evolving image dataset for pro-
cessing and analysis. Fire Safety Journal, 92:188–
194.

Wang, Z. and Bovik, A. C. (2009). Mean squared er-
ror: Love it or leave it? a new look at signal fi-
delity measures. IEEE signal processing magazine,
26(1):98–117.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli,
E. P. (2004). Image quality assessment: from error
visibility to structural similarity. IEEE transactions
on image processing, 13(4):600–612.

Yan, L., Wang, X., Zhao, M., Liu, S., and Chen, J.
(2020). A multi-model fusion framework for nir-
to-rgb translation. In 2020 IEEE International Con-
ference on Visual Communications and Image Pro-
cessing (VCIP), pages 459–462. IEEE.

Yuan, X., Tian, J., and Reinartz, P. (2020). Gen-
erating artificial near infrared spectral band from
rgb image using conditional generative adversar-
ial network. ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences,
3:279–285.

Zhu, J.-Y., Zhang, R., Pathak, D., Darrell, T., Efros,
A. A., Wang, O., and Shechtman, E. (2017). To-
ward multimodal image-to-image translation. Ad-
vances in neural information processing systems,
30.

360_____________________________________________________________________________________________________Proceedings of the Central European Conference on Information and Intelligent Systems

 
34th CECIIS, September 20-22, 2023
_____________________________________________________________________________________________________  

Dubrovnik, Croatia


