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Abstract. Active learning is a subfield of machine
learning that studies how to identify data instances that
contribute most to the learning of a given learner and
requests some oracle to provide complementary infor-
mation to enhance the learner’s learning process to-
wards a specific goal. This paper proposes a novel
active learning strategy for image classification tasks.
Furthermore, we obtain insights that lay the ground for
developing a novel early-stopping criteria to maximize
the model’s learning while reducing the required in-
stances. The proposed active learning technique uses
insights obtained via GradCAM activation maps to un-
derstand the cognition process triggered by each im-
age in the learner and select those that trigger the most
diverse patterns, presupposing that diverse GradCAM
patterns point to new learning opportunities. To our
knowledge, the approach is among the first to use in-
sights from explainable artificial intelligence to drive
data selection and annotation. Nevertheless, our re-
sults show that it does not achieve the same quality of
results as the random and uncertainty sampling tech-
niques we compared to. More research is required to
understand how to enhance the models’ performance
with such a strategy.

Keywords. Active Learning; Automated Visual In-
spection; Early Stopping; Machine Learning; Explain-
able Artificial Intelligence; Neural Networks; Quality
Assurance and Maintenance

1 Introduction

The Industry 4.0 paradigm fosters using advanced tech-
nologies to optimize manufacturing further by increas-
ing the flexibility and efficiency of the manufacturing
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process and the product value over the whole manu-
facturing lifecycle (Frank et al.,|2019). Among the en-
abling technologies, we find (i) the Internet of Things,
(i1) Big Data, (iii) Cloud Computing, (iv) Digital Twin,
(v) Additive Manufacturing, (vi) Autonomous Robots,
(vii) Simulation, (viii), Cybersecurity, (ix) Augmented
Reality, and (x) Artificial Intelligence (Suleiman et al.,
2022). These technologies are used to improve man-
ufacturing sustainability in multiple aspects, such as
employee productivity, improved profit margin, intel-
ligent production planning and control, manufactur-
ing agility, and efficiency, among others (Ching et al.,
2022)).

Product quality is relevant for businesses as it fosters
customer trust, enhances loyalty, and strengthens the
brand’s reputation (Yang et al., 2020). Therefore, qual-
ity control plays a key role in manufacturing, given it
ensures compliance with standards and specifications.
During the visual inspection, integrity, surface finish,
and geometric dimensions can be assessed (Newman
and Jain, |1995). The automated visual inspection aims
to mitigate common issues that relate to the subjective
nature of human inspection (e.g., operator-to-operator
inconsistency and quality dependence on the employ-
ees’ experience and well-being (See, 2012)), and scal-
ability issues (e.g., speed of inspection and continu-
ous execution of the inspection process among others
(Chouchene et al.,|2020)).

Machine vision is a sub-field of artificial intelligence
that develops means to process images with different
purposes. It is used in the context of visual inspec-
tion to detect and flag faulty products while recogniz-
ing their defects and allowing rapid intervention to re-
move such products, address failure root causes, and
mitigate the void that results from the estimated and
actually delivered manufactured products in the pro-
duction pipeline (Javaid et al.| 2022)). The decreased
cost of sensors, the use of machine learning algorithms,
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and other technologies are key enablers for the broader
adoption of automated visual inspection in the con-
text of Industry 4.0. Furthermore, an automated visual
inspection can be considered an essential element of
manufacturing and can have a broader impact on the
overall organization under the Industry 4.0 paradigm
(Konstantinidis et al., [2021)).

Supervised machine learning models require labeled
data to learn specific defect types. Labeling data is ex-
pensive. Furthermore, machine learning model training
times have associated costs that must be considered to
determine the value for money (Justus et al.,[2018])). Re-
ducing training times has a direct impact on reducing
such costs. Active learning provides means to select
data instances to speed up the learning of a machine
learning algorithm and therefore reduce training times,
given fewer data instances are required to achieve cer-
tain discriminative performance.

The main contribution of this research is the devel-
opment of a novel active learning technique and early
stopping criteria. While the active learning criteria
aims to achieve a steep learning curve for the machine
learning algorithm, the early stopping criteria allows
to identify when training should be stopped, given that
the algorithm will not learn much more. Combining
them, we aim to achieve an enhanced learning process
of the machine learning algorithms while reducing the
amount of labeled data that must be fed to the algo-
rithm and the training times required to train a model.
The experiments were performed considering two real-
world use cases: a dataset provided by Philips Con-
sumer Lifestyle BV corporation and an open dataset
from Kolektor (Bozi€ et al. 2021)), which has become
one of the standard datasets for automated visual in-
spection tasks.

To evaluate machine learning models, we measure
the discriminative capability with the AUC ROC met-
ric. Furthermore, we compare how many data instances
are required by each active learning strategy to achieve
their best performance and how many samples must be
shown to the model before early stopping.

The rest of this paper is structured as follows: Sec-
tion E] presents related work, Section E] introduces a
novel active learning strategy, while the Section [] de-
scribes the Kolektor and Philips Consumer Lifestyle
BV use cases and datasets. Section [3] introduces the
methodology and experiments. Section[6|describes and
analyzes the results obtained. Finally, Section [/|offers
our conclusions and outlines future work.

2 Related Work

Since deep learning algorithms for machine vision
have achieved super-human performance on certain
tasks (Ciregan et al.l |2012)), much research has been
invested in how to enhance them. Machine learn-
ing models for automated visual inspection have been
widely adopted, and state-of-the-art performance has

been achieved with deep learning models (Pouyanfar
et al., 2018} | Beltran-Gonzalez et al., [2020). Neverthe-
less, training such models from scratch is computation-
ally expensive. Furthermore, acquiring enough quality
labeled data for training such models requires a con-
siderable effort (Kocaguneli et al., 2012;|Whang et al.,
2023). Therefore, approaches such as transfer learn-
ing or few-shot learning have been proposed to reduce
both (Zhuang et al., [2020; [Wang et al., [2020). While
both approaches exist independently of active learning,
active learning can be used to enhance both.

While active learning has been researched in the
past, attention to it has been gradually increasing as a
means to reduce the labeling effort (Ren et al., 2021)).
To perform data selection, active learning methods
mostly considered either the inherent characteristics of
the data (e.g., informativeness, representativeness, and
diversity (Wu,2018))) or the model’s behavior w.r.t. the
data (e.g., the closeness of a datapoint to the decision
boundary). Such methods considered the data selec-
tion process dissociated from the actual model’s learn-
ing process. Nevertheless, there have been some excep-
tions (e.g., (Zhu et al.,|2019), who proposed optimizing
both objectives at once by formulating data selection
as a robust optimization problem). We consider that
active learning data selection policies developed up to
now used inherent data properties or model behavior
as proxies to understanding the actual model’s learning
process and decision boundaries evolution. The advent
of explainable artificial intelligence has opened a wide
range of opportunities. Explainable artificial intelli-
gence is a sub-field of artificial intelligence concerned
with enabling humans to understand machine learn-
ing models, trust and effectively manage them (Arri-
eta et al.| [2020). While much effort is being invested
into developing new explainable models, explainabil-
ity techniques, and metrics to assess their quality, to
our knowledge, insights obtained from explainable ar-
tificial intelligence have not been leveraged yet to drive
data selection in an active learning context. Neverthe-
less, such insights enable selecting data with a more
direct understanding of the ongoing learning process
inside the machine learning model.

Multiple explainability techniques have been de-
vised to provide insights into machine vision models.
Among the most popular techniques we find GradCAM
(Selvaraju et al.l 2017)) (it uses the gradient informa-
tion to understand how strongly the neurons activate),
DeepLIFT (Shrikumar et al., 2016) (uses a derivative-
based method to propagate activation differences, and
determine how changes in the image would affect pre-
dictions), or Smooth-Grad (Smilkov et al.| [2017) (mea-
sures local sensitivity based on small image perturba-
tions). Many ways have been devised to convey ex-
plainable artificial intelligence outcomes for machine
vision. Authors have considered overlaying the origi-
nal image with a cloud of points, an activation or heat
map, or some outline (Hudon et al., [2021), displaying

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia



Proceedings of the Central European Conference on Information and Intelligent Systems 401

only a relevant part of the image (Ribeiro et al., 2016)),
or highlighting it (Buhrmester et al.| 2021)).

While Meng et al. (Meng et al., [2020) consider
there is a research void regarding using active learning
manufacturing domain, we have found some examples
where it was successfully applied to the quality inspec-
tion use cases. In particular, Van et al. (van Garderen,
2018)) explored how active learning could enhance the
learning process of a machine learning model measur-
ing the local displacement between layers on a chip. In
the same line, Shim et al. (Shim et al.,[2020) described
a technique developed to select wafer maps, which pro-
vide key information to engineers for detecting root
causes of failure in the semiconductor manufacturing
process. Finally, Dai et al. (Dai et al.,|2018) described
how active learning was used to automatically enlarge a
dataset when training a model to recognize solder joint
defects in printed circuit boards.

3 GradCAM,,,

So far, Active learning techniques have mainly focused
on the characteristics of the data or the models’ behav-
ior to find instances that would be helpful to refine the
decision boundary. Nevertheless, we consider both ap-
proaches as proxies to direct insights into models’ ra-
tionale, which can now be obtained using explainable
artificial intelligence techniques. One such explain-
able artificial intelligence technique is GradCAM (Sel-
varaju et al., |2017), which computes the importance
map by taking the derivative of the reduction layer out-
put for a given class with respect to a convolutional
feature map. The importance map can be rendered as
an activation map for visualization purposes.

For this research, we have developed a novel active
learning technique named GradCAM,,,, which con-
sists of generating GradCAM activation maps for all
of the images in the pool and computing the structural
similarity index measure (SSIM) between the average
GradCAM representation of the images seen so far and
the rest of the unlabeled images. The unlabeled im-
ages are then selected considering those most dissim-
ilar compared to the average GradCAM image. The
intuition behind the algorithm is that explainable arti-
ficial intelligence techniques can provide a means to
understand how the model perceives each unlabeled
image and the ones seen so far. The unlabeled im-
ages whose GradCAM activation map is most dissimi-
lar from those seen so far are likely to offer more novel
information to the model and result in a steeper learn-
ing curve. We detail the procedure in Algorithm|[T}

Little work has been done combining explainable ar-
tificial intelligence and active learning. E.g.,|Ghai et al.
(2021)) used explainable artificial intelligence insights
to reduce opaqueness regarding the samples presented
to the human oracle labeling the data. To our knowl-
edge, GradCAM,,, is among the first active learning
techniques leveraging insights from explainable arti-

ficial intelligence to boost models’ learning. Concur-
rently similar approaches have been developed by [Za-
jec et al.| (2023). We do not know of other methods
leveraging explainable artificial intelligence in the con-
text of active learning.

4 Use Cases

The research we performed was based on two real-
world use cases concerning the visual inspection of
products manufactured by two European companies
(Kolektor Group d.o.o. from Slovenia and Philips Con-
sumer Lifestyle BV from The Netherlands).

Kolektor Group d.o.o. published a dataset (Kolektor
SDD2 ak.a. KSDD2) of over 3.000 images based on
a real-world example (Bozi€ et al., 2021). The dataset
was constructed from color images captured in a con-
trolled environment by a visual inspection system and
annotated by the company and a group of researchers.
The dataset has been considered in several publications
related to automated visual inspection. We adopt it as a
reference dataset for which the results obtained can be
compared later with further research on this topic.

Philips Consumer Lifestyle BV has printing machine
setups for several products, which are manually han-
dled and inspected to determine their quality. If a de-
fect is observed, the manufactured product is removed
from the manufacturing line to ensure only products
conforming to high-quality standards are left. Human
inspectors spend several seconds handling, inspecting,
and labeling the products. If automating the visual in-
spection process, it is expected that human inspectors
would require several seconds to label each product to
create an initial dataset. Therefore, any gains in reduc-
ing the needed labeled data and labeling times directly
translate into cost savings. Philips Consumer Lifestyle
BV provided a dataset of over 3,000 annotated images.
While fine-grained labels were supplied, we trained the
models to recognize only whether a defect exists in the
manufactured product.

5 Methodology and Experiments

5.1 Methodology

When training the machine learning models, we per-
formed stratified cross-validation (Zeng and Martinez,
2000). We adopted k=10 based on recommendations
by Kuhn et al.| (2013)) and considered one fold for test-
ing, one for validation, and the rest was used to simu-
late a pool of unlabeled data for active learning, from
which we sourced the data samples. We used a ResNet-
18 network (He et al., [2016) and trained it incremen-
tally by sourcing batches of 32 images from the active
learning pool until pool exhaustion.
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Algorithm 1 GradC AM,.q active learning algorithm. We select batches of images based on how different their
GradCAM activation maps are from the average GradCAM activation map obtained from the images labeled so

far.
1: SetUnlabeledInLages — {imgia imgi+1, imgi-i—% s 7'ngn}
2: SEtLabeledImages — {imgjv imgj_H, Z"rngj+27 s 7img7rz}
3: procedure SELECTINSTANCES(SetUnlabeledImages’ SetLabeledImageSs Nimages to select)
4 SetGTadCAIVILa,bel,adInza,ges 0
5: SetGTadCAMUnlabclcd 0
6 for img € Setpaperedrmages A0 S€tGradCAM L verearmages S 1GTadCAM (img)}
7 end for
8 for ng € SetUnlabeledImages do SEtGradCAJ\IUnlabeled U {GTQdOAM(ng)}
9: end for
10: GradCAMayg < avg(SetGradCAMpapercarmages)
11 DictionaryGradC AMypapereq to SSIM < {}
12: for GTadCAMimg € SetGradCAMy,1aperea 4O
13: Dictionary(;mdcAMUnlabeled toSSIM < C;T’adC’AJ\/[img7 dSSIM (CrYT(IdC'A]\4(wg7 GT’adCAMimg)
14: end for

return tOp(DiCtiOna?"medCAMUn,a,be,ed toSSIM s Mimagesto select)

15: end procedure

5.2 Experiments

To understand the inherent performance limitations
of the machine learning models on the datasets, we
trained a model on all of the data available in the ac-
tive learning pool. We considered the resulting per-
formance to be the best that could be obtained by a
ResNet-18 model trained on that particular data.

We trained the ResNet-18 model considering three
active learning strategies: (i) random sampling (base-
line), (ii) uncertainty sampling (selects samples with
the highest uncertainty, computed as the difference
between the highest predicted score and one), and
(iii)) a novel technique of our own that we named
GradCAM,,,, which we described in Section We
examined the models’ performance over time for each
case and analyzed when the learning performance
peaked. Furthermore, we took the subset of images
presented to the model until learning peaked in the ac-
tive incremental learning and trained the model with
it in a batch setting. This enabled us to understand
differences in performance between models trained in
batch or incremental learning settings while reducing
the amount of data shown to them based on the active
learning criteria.

6 Results and Analysis

6.1 Active learning: batch vs. incremental
learning

Among the experiments, we were first interested in
assessing how data sampling strategies affected the
learning process and discriminative performance of the
ResNet-18 model. Regarding discriminative perfor-
mance (see Table EI) we found that the random sam-
pling led to the highest AUC ROC score (0.8967) for

Random sampling

Uncertainty sampling GradCAM,,q sampling

Figure 1: We display plots in two rows: (a) discrimina-
tive performance over time and (b) number of images
regarding defective products left in the active learning
pool over time. The plots correspond to the Kolektor
SDD2 dataset.

the Kolektor SDD2 dataset, while uncertainty sampling
and GradCAM,,, lagged with an AUC ROC score of
0.8647 and 0.8502 in an incremental learning setting.
Nevertheless, when considering the same sampled im-
ages in a batch learning setting, the differences were
less pronounced: random and uncertainty sampling
achieved almost the same mean AUC ROC (0.9103 and
0.9187), and GradCAM,,, slightly lagged (0.9006).
For the Philips shavers dataset, we verified the same
performance pattern concerning active learning tech-
niques in the incremental learning setting. Neverthe-
less, uncertainty sampling and GradCAM,,, lagged be-
hind random sampling when training the model in a
batch setting.

6.2 Active learning:
pool composition

learning curves vs.

When analyzing the results (see Fig. [I] and Fig. [2)),
we focused on two plots: (a) AUC ROC plots, display-
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AUC ROC (average) Active Learning strategy (data selection)
Dataset Learning strategy Random Uncertainty GradCAMavg
Kolektor SDD2 Incremental Learning | 0.896740.0133 | 0.864740.0098 | 0.85024-0.0310
Batch Learning 0.9103+0.0161 | 0.9187+0.0215 | 0.9006+0.0302
Philips (shavers) Incremental Learning | 0.9416+£0.0100 | 0.91244-0.0123 | 0.9095+0.0162
Batch Learning 0.9799+0.0088 | 0.9526+0.0086 | 0.93954+0.0113

Table 1: AUC ROC for binary classification setting, comparing three active learning techniques and how the same
set of images affects learning when considering incremental or batch learning.

Random sampling

\\\

Figure 2: We display plots in two rows: (a) discrimina-
tive performance over time and (b) number of images
regarding defective products left in the active learning
pool over time. The plots correspond to the Philips
Consumer Lifestyle BV shavers dataset.

Uncertainty sampling GradCAM,,, sampling

ing how models’ discriminative performance evolved
and (b) plots showing the number of samples of de-
fective products left in the pool of unlabeled data. We
found that the AUC ROC curve usually started decreas-
ing close to the knee point of the plot (b).

The curve in plot (b) strongly reminded the scree
plot curves. Based on this observation, we wondered
whether a similar rule of thumb as the one used to se-
lect principal components in principal component anal-
ysis with a scree plot (Satopaa et al., 2011) could be
used in this case to determine how long to sample data
from the active learning pool. While the information
displayed in plot (b) assumes the labels are known, the
active learning setting assumes unlabeled data. Never-
theless, some soft labeling strategies could be used to
mitigate this issue.

When considering the results presented in Table 2]
and Table 3] we found that in all cases, the model with
the best discriminative performance in the validation
set until the knee point in the plot had better perfor-
mance than the model at the knee point. Nevertheless,
these models displayed inferior performance in all but
one case than the best discriminative model obtained
by annotating the data samples until pool exhaustion.
Furthermore, the best models lead by at least 0.1 AUC
ROC points when compared against the best models
obtained until the knee point.

Analyzing the Kolektor SDD?2 dataset, we found that
the best-performing models originated after the knee
point for random sampling. This was not the case for

the uncertainty sampling and GradCAM,,, strategies
where, on average, the best models appeared before
the knee point, but not always. On the other hand, in
the Philips shavers dataset, the best models were ob-
served after the knee point when using random and
GradCAM,,; sampling. This was not the case for un-
certainty sampling, where, on average, the best models
appeared before the knee point. Moreover, the pattern
of having the best models appear before the knee point
seems to correlate to the shape of the plot (b): the best
models appear before the knee point when the plots
have a part of the curve that resembles debris fallen
from a mountain and lying at its base. While uncer-
tainty sampling displayed a consistent behavior across
both datasets, early stopping at the knee point signifi-
cantly degraded the model’s performance when trained
incrementally.

7 Conclusion

In this research, we describe a novel active learning
technique we named GradCAM,,, given it aims to se-
lect candidate images for labeling from unlabeled data
based on their SSIM score when compared against the
average of GradCAM activation maps for the images
labeled up to that point in time. To our understand-
ing, this method is among the first ones leveraging
insights from explainable artificial intelligence tech-
niques to drive data selection. When analyzing AUC
ROC plots and plots describing the composition of the
unlabeled dataset, we found that active learning strate-
gies that greedily source data instances of defective
products tend to achieve best-performing models be-
fore the knee point at those plots. While applying such
criteria led to sub-optimal results in this research, more
effort is required to overcome this limitation and capi-
talize on this insight to develop a novel early stopping
criteria. We envision that such an early stopping crite-
ria could guide active learning data annotation efforts.
Future work will attempt to evaluate the GradCAM,
technique on a comprehensive number of datasets and
develop a novel early-stopping technique based on the
insights of this research.

34th CECIIS, September 20-22, 2023

Dubrovnik, Croatia



404 Proceedings of the Central European Conference on Information and Intelligent Systems

Number of samples seen by the model Active Learning strategy (data selection)
Dataset Cut-off criteria Random Uncertainty | GradCAMavg
Best Discriminative Performance 1502+t416 1088160 6721288
Kolektor SDD2 Knee Point in Plot 1184+256 1184496 800+160
Best Discriminative Performance until Knee Point 8961320 10241128 4484192
Best Discriminative Performance 22724384 960352 2112+416
Philips (shavers) | Knee Point in Plot 1600+352 1664+128 768+256
Best Discriminative Performance until Knee Point | 1792+384 7684320 5444224

Table 2: Number of samples for binary classification setting, comparing three active learning techniques. We aim
to understand whether the best models are learned before or after the knee point. Furthermore, we are interested in
understanding when the best model before a knee point originates.

AUC ROC (average) Active Learning strategy (data selection)
Dataset Cut-off criteria Random Uncertainty GradCAMavg
Best Discriminative Performance 0.8967+0.0133 | 0.8647+0.0098 | 0.85024+0.0310
Kolektor SDD2 Knee Point in Plot 0.7965+0.0348 | 0.7183+0.0665 | 0.6646+0.1236
Best Discriminative Performance until Knee Point | 0.8216+0.0298 | 0.82554+0.0317 | 0.713740.0917
Best Discriminative Performance 0.9103+0.0161 | 0.9187+0.0215 | 0.9006+0.0302
Philips (shavers) | Knee Point in Plot 0.914740.0195 | 0.5819+0.1481 | 0.6445+0.1205
Best Discriminative Performance until Knee Point | 0.9130+0.0182 | 0.74584+0.0979 | 0.6942+0.0641

Table 3: AUC ROC for binary classification setting, comparing three active learning techniques. We aim to
understand the performance of the best overall model and how it compares against the best model obtained until

the knee point.
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