Proceedings of the Central European Conference on Information and Intelligent Systems 3

Towards an Orchestrated Game Development Approach to
Digital Twinning in Autonomous Vehicles

Markus Schatten, Tomislav Peharda, Igor Tomicié¢

Faculty of Organization and Informatics, Artificial Intelligence Laboratory

University of Zagreb
Pavlinska 2, 42000 Varazdin, Croatia
{markus.schatten,tomislav.peharda,igor.tomicic}@foi.unizg.hr

Abstract. In this paper we provide a game de-
velopment perspective on Digital twins (DTs) with
emphasis on smart and autonomous vehicles. A DT
which comprises a virtual representation of some
systems’ throughout its lifecycle and used real-time
input, simulation, reasoning and machine learning
to allow for decision making about the actual system
is described as an agent or actor inside a simulated
(game) environment. We provide a conceptual model
for the development of DTs within an orchestration
platform for hybrid artificial intelligence services that
is being developed for complex game engines.
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1 Introduction

Digital twins (DTs) is the concept of having a virtual
model that describes an observed physical system as
accurately as possible. The difference between a DT
and a plain simulation is in robustness of a DT in terms
of variety of processes that may be analyzed, as well
as DTs often working on real-world data from the sim-
ulated system. For example, a simulation may be tar-
geting only a single parameterized use-case in order to
conduct an analysis, whereas a DT serves as sort of a
virtual environment that is capable to run all use-cases
that a physical model may engage in (Rassdlkin et al.,
2019; Wang et al., 2022). Classically defined, a dig-
ital twin is "a virtual replica of a real-world product,
system, being, communities, even cities, that are con-
tinuously updated with data from its physical counter-
part, as well as its environment" (Jiang et al., 2021).
Compared to a "classical" model, which is defined
as a simplification/abstraction of the real system, DT
can be viewed as a complete mirror image model. A
DT model could be developed for the purpose of any
complex system. Some examples might include wind
turbines, autonomous vehicles (AVs), aircraft tracking
etc. Several authors view the practice of DT as the
backbone of industry (Colombo et al., 2017; Jiang et

al., 2021; Jones et al., 2020; Melesse et al., 2020). Al-
though the term was coined about 20 years ago, it draw
significant attention more recently, due to digital infras-
tructure being more embedded throughout the indus-
try, cities, communities and everyday activities (Batty,
2018).

In this paper we will present benefits and caveats of
using an orchestrated game development platform for
the implementation of DTs of AVs, including the elim-
ination of duplicated and "boilerplate" code as well as
the reuse potential of the original AV system code due
to the introduced modularity and proces distribution.
However, such benefits might come with the price of
additional computing resources.

2 Digital Twins in Autonomous Ve-
hicles

Recently, the number of research papers on the subject
of using DTs for AVs has been rising constantly. For
example, in (Rassdlkin et al., 2019) it has been inves-
tigated how the DT concept can be beneficial on han-
dling propulsion in an electrical vehicle. The idea is
that a physical vehicle, which is equipped with plenty
of various sensors as well as measurement systems,
shares the vehicle propulsion information with the ser-
vice system which is connected to the DT environment.
On demand, the service system conducts simulations
inside the DT environment for which it gets a feed-
back. The service system then uses the feedback to
control the vehicle. On a similar note, (Wang et al.,
2022) propose the usage of the DT concept, however,
with the focus on traffic modelling. They suggest that
proper traffic simulations are crucial to AVs safety and
performance as different traffic dynamics will require
the vehicle to apply adequate driving style depending
on it. The DT concept may as well be utilized for bet-
ter economics (Bhatti et al., 2021) of vehicle aspects in
terms of gas consumption, driver assistance systems,
battery management systems, vehicle power electron-
ics, etc. Vehicle safety and security is another domain
that requires high-level of attention (Almeaibed et al.,
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2021). An example that is being brought up in the re-
search is related to insuring consistent behaviour of a
vehicle in case of a cyber attack that may harm the ve-
hicles data integrity and consistency. Obviously, such
a scenario could even lead to a traffic accident. In that
sense, DTs are proposed to simulate data collection,
data processing, and analytics.

It is evident that in the domain of autonomous ve-
hicles solely, there is a wide range of aspects that re-
quire proper monitoring and forecasting, which could
be supported by the usage DTs. This implies that the
development of DTs is a challenging task thus requir-
ing proper planning and system architecture. artificial
intelligence (AI) and especially machine learning (ML)
are greatly advocated for in this domain as they help
predicting and proposing future actions based on the
current circumstances. Obviously, usage of such meth-
ods adds another layer of complexity. As the compo-
nents may change, it is also significant to make the
DTs components extendable and modular in order to
easily adjust them to new requirements. For example,
with a presence of more AVs every day, that may indi-
cate a different development paradigm shall be applied
(Almeaibed et al., 2021; Bhatti et al., 2021). In the fol-
lowing we will try to address these problems related to
the need of complexity reduction as well modulariza-
tion of AV and DT architectures.

3 Awkward II-nguin Orchestration
Infrastructure

In (Schatten, Okresa Purié, et al., 2020) we have intro-
duced a high-level conceptual model of our microser-
vice orchestration platform shown on figure 1. We have
partially implemented! this platform in form of APi
which is a declarative agent-based programming lan-
guage based on II calculus (Milner, 1999) (a process
calculus) that allows us to model communication flows
between microservices.

APi is agent based (i.e. microservices are rep-
resented as autonomous agents) and in fact holonic
(Rodriguez et al., 2011) (i.e. agents can be orga-
nized hierarchically as holons). APi also features a
declarative engine implemented in Python and espe-
cially Smart Python Agent Development Environment
(SPADE) (Palanca et al., 2020) with parts implemented
in ANTLR (syntax parser) (Rajan, 2022) and BASH
shell scripts (for inter-process communication). It is
programming language agnostic (i.e. microservices
can be implemented in any programming language that
can be executed under UNIX-friendly environments)
and communication protocol agnostic (i.e. services
can communicate using stdin/stdout process commu-
nication, files, HTTP, TCP, UDP or WebSockets whilst
other protocols can be added through a partially im-

! Awkward TI-nguin (APi) is open source and available at https:
/lgithub.com/AILab-FOI/APi

plemented plug-in system) which is accomplished by
creating wrappers around each microservice to be used
in an ensemble. These wrappers then behave as agents
inside a holonic multi agent system (HMAS) and can
be used as building blocks for the creation of com-
plex architectures. In a way, APi is a high-level net-
work implementation of the UNIX inter-process com-
munication system based on input/output redirection in
which special programs (called filters) can be used to
create complex chains of processing whereas each pro-
cess reads the standard output of a previous process as
its input and "filters" it producing new output to be used
in a consecutive process. The same basic idea applies
to APi but with the addition that these processes (in
our case microservices or agents in the end effect) can
be distributed among various servers and communicate
across a network regardless of their implementation.

The syntax of the APi programming language is in-
fluenced by Python and II-calculus. The following ex-
cerpt (listing 1) shows some of the main features of the
language.

Listing 1: Example APi syntax

environment :
inputl => { ’vall’: 7x, ’val2’: 7y }
outputl <= { ’action’: 7act }

channel c :
{ ’data’->?x } -> { ’payload’ -> 7x }

agent a ( x )
inputl -> self
self -> 7x

agent b :
c -> self

self -> outputl

start a( ¢ ) & b

In this excerpt a holon is defined which com-
municates with the environment through channels
inputl and outputl. A local channel (c) is de-
fined which transforms accepts messages of the form
{ ’data’->?x } (JSON format with logic variables)
defined on the left-hand side, and emits messages
of the format { ’payload’ -> 7x } defined on the
right-hand side. Additionally two agents (microser-
vice wrappers) are defined (a and b). Agents’ defini-
tions correspond to corresponding service-descriptors
which describe how to start the service, how it com-
municates, what type of service it is etc., and can take
arguments. In each agent definition there are one or
more channel mapping definitions, for example agent
a will direct messages from inputl to its own in-
put (keyword self) and redirect its outputs to chan-
nel held in the variable 7x (an instantiation argument).
Both agents are started consecutively (when agent a
finishes successfully agent b will be started). The de-
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Figure 1: High-level Conceptual Model (Schatten, Okresa Duric, et al., 2020)

fined holon can then be imported into other holons to
create complex orchestration architectures. For exam-
ple if the above holon had been defined in a file called
holonl.api we could import and use its output as
shown in listing 2

Listing 2: Example APi syntax

from holonl import outputl as hil

agent a ( ... )
hl -> self

The platform is intended for the orchestration of es-
pecially Al and computer game related microservices
as outlined in (Schatten, OkreSa Purié, et al., 2019) and
(Schatten, Tomicié, et al., 2020). In that regard, it al-
lows us to connect and assemble complex data stream-
ing applications which is a prerequisite for the imple-
mentation of AV systems and consequently DTs.

4 Digital Twins as Game Actors

A common software development pattern in computer
game design is the actor model (Lindley, 2002; Silva et

al., 2000) which corresponds to the multiagent systems
(MASs) model or more precisely to intelligent virtual
environments (IVEs) (OkreSa Puri¢ et al., 2019; Rin-
con et al., 2014). In such environments actors (agents)
interact with their environment which consists of other
(potentially intelligent and or autonomous) agents as
well as dynamic or inanimate, static objects.

It has been argued that IVEs provide us with the nec-
essary toolset to develop, test and monitor AVs archi-
tectures (Ferreira et al., 2002; Schatten, Okresa Puri¢,
etal., 2019; Zhang et al., 2008). Herein we argue addi-
tionally that a serious game development environment
with an orchestration platform as described in section
3 can provide additional benefits. Firstly, game de-
velopment environments usually feature an integrated
game engine that provide basic components necessary
for the development of IVEs including but not limited
to 3D physics, various sensors, a simulation engine,
Al methods, actor templates, cameras, logging facili-
ties etc. Additionally, it provides us with instant visual
monitoring of the environment. Secondly, an orches-
tration platform allows us to implement complex data
streaming ensembles that might consist of various ML
cloud services that are usually to resource consuming
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to be executed on one computer during a simulation
and/or real-time monitoring.

In order to implement a DT of an AV real-time mon-
itoring of the vehicle in sense of sensor inputs, actua-
tor outputs as well as internal decision making mech-
anisms is crucial. With an orchestration platform in
which multiple cloud-based servers can be employed to
handle various complex tasks like pattern recognition,
automated planning or reasoning; such a workload can
be distributed and handled. In the following we will
show a simple proof-of-concept implementation of a
DT of an AV using the APi language.

An implementation of a AV system usually consists
of a number of sensors (which might include LiDAR,
radar, cameras etc.), a number of decision making ser-
vices (e.g. ML models, complex Al algorithms includ-
ing but not limited to search and planning techniques),
a number of communication services (communicating
with relevant on-line services like traffic congestion
and other information, routing services etc.), as well as
anumber of actuators (e.g. steering, car safety monitor-
ing like tire pressure, fuel or battery life, infotainment
systems etc.). All these subsystems can be wrapped
into mutually communicating agents inside a holon as
described in section 3.

For sake of simplicity, let us assume that the AV is a
holon (i.e. a multi-agent system of various component)
that communicates by reading its sensors and appropri-
ate external services and writing commands to appro-
priate actuators. An implementation of such a holon in
APi would look similar to the code in listing 3

Listing 3: AV holon implementation - AVHolon.api

environment
sensor_1 =>

sensor_n => ...
external_service_1 =>

external_service_k =>
actuator_1 <=

actuator_m <=

agent AV
sensor_1 -> self

sensor_n -> self
external_service_1 -> self

external_service_k -> self
self -> actuator_1

self -> actuator_m

It is important to note that by defining the AV system
in this way we abstract away all internal mechanisms of
communication, meaning that we now have standard
communication interfaces (channels) for all included

components and that these interfaces can be reused, i.e.
we can redirect them at will to other agents or holons.
This possibility of redirection is a special feature of the
declarative engine of APi - it allows us to listen to or
write to any channel in the given scope (i.e. the current
holon which in this case acts as a namespace). This fea-
ture is most important for the implementation of a DT
since it allows us to "tap into" communication flows
and process real time data.

In order to have benefits from a DT we should addi-
tionally add a corrective input, i.e. an additional com-
munication channel to allow for intervention if the AV
system does not function as intended. The environment
would then look as shown in listing 4.

Listing 4: Adding a corrective to the AV holon

environment
corrective =>
sensor_1 =>

Having the prerequisites defined, the implementa-
tion of a DT using APi is now straightforward. We
firstly have to import all communication channels and
redirect them to a new agent which will represent the
DT. In the end we start the DT in parallel with the AV
holon defined above as shown in listing 5.2

Listing 5: Digital twin implementation

from holonAV import semnsor_1 as sl
from holonAV import sensor_n as sn

from holonAV import external_service_1 as
= cil

from holonAV import external_service_k as
— ek

from holonAV import actuator_1 as al
from holonAV import actuator_m as am
from holonAV import corrective as cr

agent AVtwin :
sl -> self

sn -> self
el -> self

ek -> self
al -> self

am -> self
self -> cr

2The | character between two agents denotes parallel execution.

33rd CECIIS, September 21-23, 2022

Dubrovnik, Croatia



Proceedings of the Central European Conference on Information and Intelligent Systems 7

start holonAV | AVtwin

In this way the DT can monitor all inputs and all
outputs of the original AV system and use this data to
update its IVE, simulate and analyze its decision mak-
ing process as well as send corrective information if
needed.

5 Discussion

The main benefit of an orchestrated implementation as
shown in section 4 is the modular approach that mini-
mizes code duplication especially in "boilerplate” com-
munication code. In a non-orchestrated implementa-
tion each service instance from the original AV sys-
tem which communicates in any way (which is in fact
most instances) would have to be either rewritten or
at least extended to forward communicated data to the
DT. Also, for the implementation of the DT each com-
ponent simulation of the original would have to be im-
plemented anew in an IVE, game engine or other simu-
lation environment using native development tools and
languages. By using agent wrappers around these com-
ponents most (not hardware specific) code could be
reused and work in a more or less unchanged way as
it would in the original setting.

Still, there are caveats of course. By wrapping the
original AV system components as agents additional
overhead code is introduced which might use addi-
tional computing and resources in order to function and
communicate with the orchestration platform. Such ad-
ditional resources might not be available or it might
be not desirable to use them in real-time and mis-
sion critical settings. Additionally, a problem that isn’t
solved using the given approach is the need to imple-
ment the update process of the IVE by using real-time
data from the original AV system. These update com-
ponents need to be implemented as additional services
which will update the simulated environment based on
sensory data and integrated with the other (possible
reused) services. On the other hand, the integration
process is fairly trivial, due to the modularity of APi,
i.e. they can be introduces without intervention into
the code of the original services, which might not be
the case in a non-orchestrated setting.

6 Conclusion

In this paper we have argued the benefits and caveats
of using an orchestrated game development platform
for the implementation of DTs of AVs. By using the
APi platform that we are actively developing we have
shown how to implement a basic DT ensemble. The
most important advantages of using an orchestrated
game development platform, besides the various build-
ing blocks provided by game development software

(especially game engines), include the elimination of
duplicated and "boilerplate” code as well as the reuse
potential of the original AV system code due to the
introduced modularity and proces distribution. These
benefits come with an expense of introducing the need
of additional computing resources on the AV system
side.

Our future research is aimed towards the implemen-
tation of a proof-of-concept digital twinning environ-
ment for AVs in which we shall address some of the
issues outlined above.
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