
Employing Portable JavaFX GUIs with Scripting

Languages

Rony G. Flatscher

WU (Wirtschaftsuniversität Wien)

Institut für Wirtschaftsinformatik und Gesellschaft

Welthandelsplatz 1, 1020 Wien, Austria

rony.flatscher@wu.ac.at

Günter Müller

Albert-Ludwigs-Universität Freiburg

Institut für Informatik und Gesellschaft (IIG)

Emmy-Noetherstraße 2, 79011 Freiburg, Germany

mueller@iig.uni-freiburg.de

Abstract. When creating standalone applications with

scripting languages it may become a challenge to

devise powerful graphical user interfaces (GUI) for

them that can be deployed and run on all the major

operating system platforms, notably Windows, MacOS

and Linux. This article introduces a platform

independent solution for scripting languages that

makes it feasible to quickly implement GUIs, ranging

from simple to the most complex needs, by exploiting

JavaFX (OpenJFX) and taking advantage of the Java

(OpenJDK) scripting framework (javax.script). This

way it becomes possible to create standalone, portable

GUI applications with scripting languages that

support the Java scripting framework.

Keywords. End-user programming, Java, Java

Scripting Languages, Java Scripting Framework,

portable, GUI, JavaFX, SceneBuilder, open-source,

ooRexx, Groovy, JRuby, Nashorn (JavaScript)

1 Introduction

ooRexx (Cowlishaw 1990, Flatscher 2013, ooRexx

2021) is an easy to learn, message based, dynamically

typed and caseless scripting language that has been

successfully employed for teaching Business

administration students programming from scratch in a

single semester with a teaching load of only four hours

per week (Flatscher & Müller 2021).

Like many (scripting) programming languages

ooRexx1 does not come with the necessary function or

class libraries that would allow for creating portable

graphical user interfaces (GUI). The programming

language Java (OpenJDK 2021) on the other hand has

been devised with portability and includes GUI classes

that are therefore available on all platforms where Java

is installed. As a matter of fact, standard Java comes

with the portable “abstract window toolkit (awt)” and

1 This article is based on the beta version of ooRexx

5.0 as of summer 2021 which has achieved release

quality.

the “swing” GUI classes. Java 8 includes in addition an

extremely powerful GUI library named “JavaFX”

(OpenFX 2021, JavaFX 2021a, JavaFX 2021b) that

constitutes an independent, powerful portable GUI

environment, which got separated as four proper

JavaFX modules starting with the introduction of Java

11.

As it was important for Business administration

students to learn and experiment with GUI applications

it was seen to be beneficial, if they were able to exploit

JavaFX with their freshly learned ooRexx skills only.

So the challenge then was to combine ooRexx to

interact with Java and its various GUI classes, to create

portable GUIs. This is possible with the external

function and class library BSF4ooRexx (“Bean

Scripting Framework for ooRexx”) (Flatscher 2010,

BSF4ooRexx 2021) which actually is a bidirectional

Java bridge that allows one to fully exploit Java from

ooRexx. The most powerful Java GUI library to create

(the most complex) portable GUI applications is

“JavaFX”. As “JavaFX” supports the Java scripting

framework (Java package javax.script, Oracle 2021a)

this endeavor can be facilitated considerably, if there is

an appropriate Java script engine available for the

desired programming language, which is the case with

the BSF4ooRexx bridge for the ooRexx language.

Interestingly, there are almost no resources or

tutorials that would explain and demonstrate how any

programming language that can be used from Java as a

scripting language could be employed for stand-alone

portable JavaFX GUIs.

This article will therefore introduce JavaFX from a

bird eyes view, followed by sketching the most

important features of the Java scripting framework,

followed by one of its most important usability

features, the defining of GUIs in the form of XML

marked up text files that may include references to non-

Java programming languages for running programs

explicitly or implicitly as JavaFX event handlers and

controllers.

Proceedings of the Central European Conference on Information and Intelligent Systems___333

32nd CECIIS, October 13-15, 2021

Varaždin, Croatia

A simple, bare-bone JavaFX GUI will be devised

and explained that combines the different introduced

concepts to create an ooRexx nutshell program that

creates a portable JavaFX GUI that runs unchanged on

Windows, Linux and MacOS without a need to code

anything in Java and which is intended to serve as a

role model for other “Java scripting languages”, i.e.

scripting languages that can be addressed with an

appropriate implementation of the Java

javax.script.ScriptEngine interface.

The concepts being introduced and demonstrated

with ooRexx can be applied to any programming

language with a Java ScriptEngine implementation.

The JavaFX GUI example introduced in this article and

explained and demonstrated with the ooRexx scripting

language will also be demonstrated with the equivalent

implementations in Groovy (Groovy 2021), JRuby

(JRuby 2021) and the Nashorn JavaScript (Nashorn

2021) scripting languages for event handlers and

controllers.

2 Related Work

With the introduction of JavaFX 1.0 in 2008 (JavaFX

2021a, 2021b) a new scripting language, JavaFX Script

(JavaFX Script 2021), got introduced as well, which

was supposed to be used for creating controller code.

“JavaFX Script” got dropped from JavaFX 2.0, but

support for Java scripting languages using the Java

scripting framework (Java package javax.script, a.k.a.

JSR-223) (JSR-223 2021) has been kept. Therefore the

ability to deploy non-Java programming languages has

been kept and can still be exploited to this day. Since

then, new JavaFX tutorials, books and articles have

concentrated on using Java only for application

development with JavaFX, e.g. (Eden-Rump 2021,

Epple 2015, Fedortsova 2021, SceneBuilder 2021b).

A few resources pointed at the possibility of

employing Java scripting languages for creating event

handlers and controller code for JavaFX GUIs like

(Jenkov 2021, Pomarolli 2021), however exclusively

using JavaScript as the scripting language. None of

such resources have come up with standalone

applications written in a Java scripting language only

that takes advantage of JavaFX, but remains self-

contained, i.e. is not dependent on using a Java

application as its scripting and JavaFX GUI host.

To demonstrate the functionality and basic

architecture of JavaFX in small nutshell programs it

has become a custom pattern to use a simple window

with a push button and a label field that gets updated,

each time the button gets pressed (e.g. Eden-Rump

2021, Ruzicka 2019). Such small “nutshell” examples

among other things allow to explain and demonstrate

how event handlers and controllers can be written that

update the JavaFX GUI.

Detailed information about using the ooRexx

scripting language with portable JavaFX GUIs can be

found in (Flatscher 2017a, 2017b, 2018) which explain

in detail how the Java script engine for ooRexx

implementation got conceived (Flatscher 2017a) and

how to apply it for creating JavaFX GUIs in detail

(Flatscher 2017b) using the standard “push button

updates label” pattern. The JavaFX samples introduce

and demonstrate many more features of FXML GUIs,

like rendering the GUI with CSS (cascading

stylesheets), resource bundles, automatically updating

GUI elements with values from the

javax.script.ScriptContext Bindings. (Flatscher 2018)

introduces the two distinct Java GUI event dispatch

threads for Java “awt/swing” and the “JavaFX

Application thread” and introduces an easy way to

instrumentate them reliably using an ooRexx message

based solution for updating the GUI from non-GUI

event dispatcher threads.

3 Making Portable GUIS with

JavaFX

The JavaFX GUI classes use the top level package

name “javafx” instead of “java” or “javax” which

makes it easy to determine whether the Java classes in

programs originate from it.

Figure 1. A GUI created with JavaFX FXML

3.1 A JavaFX Application in a Nutshell

Life-cycle of a JavaFX application in a nutshell:

 To start up the JavaFX application one needs to

invoke one of its launch(…) methods which are

responsible for creating the JavaFX event

dispatching thread called “JavaFX Application

Thread” to manage the JavaFX GUI and invoking

the method start(javafx.stage.Stage).

 A GUI in JavaFX is defined as a tree of JavaFX

nodes representing a javafx.scene.Scene (the GUI)

that gets displayed on a Stage (a window). This tree

corresponds to a DOM tree. The JavaFX nodes of a

GUI (Scene) can be optionally defined in an XML

marked up text file of type FXML that gets loaded

using one of the static load(…) methods of the Java

class javafx.fxml.FXMLLoader. FXML files can be

created and maintained with a GUI tool, named

“SceneBuilder” for which a Java tutorial

(SceneBuilder, 2021) exists that uses a simple

dialog with a push button and a label.

Figure 1. A GUI created with JavaFX FXML

334___Proceedings of the Central European Conference on Information and Intelligent Systems

32nd CECIIS, October 13-15, 2021

Varaždin, Croatia

 A JavaFX node can be optionally styled using

cascading style sheet (CSS) rules where the CSS

properties get prefixed with the string “-fx-”.

 The JavaFX application will be closed by invoking

the static exit() method of the

javafx.application.Platform class or if its static field

implicitExit is set to true and the last JavaFX

window (Stage) gets closed in the application.

3.2 Java Scripting Framework

The Java scripting framework (package javax.script)

a.k.a. JSR-223 defines Java interface classes that need

to be implemented for supporting a scripting

programming language for Java. This implementation

need is eased considerably as the javax.script package

already offers implementations of most of these

interface classes, notably the Java classes named

AbstractScriptEngine, SimpleBindings, and

SimpleScriptContext.

The interface ScriptContext defines methods that

maintain Bindings which are directories that map

names to values and allow interacting with them. The

SimpleScriptContext defines two SimpleBindings

(implementing in addition the interface

java.util.Map<String,Object>), one is named the

“global scope” with the int value 200 and the other is

named “engine scope” with the int value 100. The

ScriptContext interface defines methods for fetching

the different managed Bindings and adding, querying

or deleting entries in them.

JavaFX will use the SimpleScriptContext to store

all JavaFX nodes that possess an fx:id attribute in the

global scope SimpleBindings (int value 200) and the

event object in callback situations to the engine scope

SimpleBindings (int value 100) when invoking scripts

via the Java scripting framework.

There are many programming languages that

qualify as “Java scripting languages”, i.e. that have an

implementation of ScriptEngine for Java. The scripting

languages may be implemented in Java, respectively

Java byte code as is the case for the family of “JVM

Languages” (JVM Languages 2021) among them

Groovy, JRuby and Nashorn. It is also possible to use

JNI (Java native interface) to bridge any programming

language with Java and implement a ScriptEngine for

it which is the case for ooRexx which is implemented

in C++ and the Java bridge BSF4ooRexx which

implements a JSR-223 compliant RexxScriptEngine.

3.3 FXML (FX Markup Language)

JavaFX nodes can be defined in a file with text marked

up using FXML. The javafx.fxml.FXMLLoader class

gets used to process such FXML files and instantiate

and set up all of the defined JavaFX elements by

creating corresponding JavaFX objects that represent

nodes at runtime. Fig. 2 depicts the FXML definitions

of the GUI in Fig. 1 above.

The XML process instruction (PI) target import

denotes three fully qualified JavaFX classes that get

used in the FXML file and which will be instantiate at

runtime by FXMLLoader: the JavaFX container

AnchorPane maintains a Button and a Label defined

with layout information including the color GREEN to

use for text. Note that the fx:id attribute uniquely

identifies the button (“idButton”) and the label

(“idLabel”). To demonstrate the ability to have script

code in external files executed and thereafter use

functions defined in them from event attribute code, a

controller file (“hello_controller.rex”) gets defined.

The button’s “onAction” attribute defines code that

invokes the controller’s public function

“buttonClicked” to get the text to be displayed in the

label named “idLabel”.

Figure 2. FXML GUI definition file “hello.fxml”

Proceedings of the Central European Conference on Information and Intelligent Systems___335

32nd CECIIS, October 13-15, 2021

Varaždin, Croatia

Figure 3. ooRexx program “main.rex” that launches the JavaFX application

Figure 4. ooRexx controller (“hello_controller.rex”)

The PI with the target language defines the

programming language rexx to be used for executing

code which is defined in the button’s onAction

attribute. The code that is stored in the file denoted by

the source attribute in the fx:script element after the

children end tag will get executed by a ScriptEngine

that serves the file type “.rex” which is the rexx engine

as well. The Java script engine corresponding to the

defined programming language gets resolved using the

Java scripting framework (method getEngineBy-

Name(String shortName) and getEngine-

ByExtension(String extension) in the class javax.script.

ScriptEngineManager).

FXML files can be easily created and maintained

with the WYSIWYG (“what you see is what you get”)

editor named SceneBuilder (SceneBuilder 2021a)

which allows for defining all aspects of a GUI

declaratively. Furthermore it supports creating event

handler code in Java right in the editor, a support which

is not really available for scripting languages. For this

reason it becomes necessary to manually edit an FXML

file to inject the language PI to define the scripting

language that must be used to execute the event handler

code and all script code stored inline in the FXML file.

One is able to define different FXML files to use

different programming languages than Java that get

used to implement the event handler and inline script

(fx:script) code. The JavaFX FXMLLoader class in this

2 Starting with JavaFX 15 the event object will be made directly
available as the single argument additonally.

case employs the Java scripting framework and

therefore one can use code written in any of the many

available Java scripting languages.

The static load(…) method of the

javafx.fxml.FXMLLoader class that processes the

FXML file “hello.fxml” will add all known JavaFX

nodes with an fx:id attribute to the global scope

SimpleBindings. Therefore the script denoted in the

source attribute (value: “hello_controller.rex”) in Fig.

2 (fx:script element) will be able to access the idButton

and the idLabel JavaFX objects using the

SimpleScriptContext if this is needed. Whenever the

button event fires the event handler (onAction attribute)

will get executed after the event object got placed into

the local scope SimpleBindings using the name

“event”.2

3.4 Making a Portable GUI from ooRexx

ooRexx is a dynamically-typed, message based, object-

oriented programming language, which is easy to learn

yet quite powerful. The message operator is the tilde

(~) that separates the receiver object on the left from

the message name and its arguments to the right of it.

Conceptually, the receiver object looks for a method by

the name of the received message, invokes it with the

received arguments and returns any result that may be

returned. As ooRexx programs use English like

keyword instructions and English method names they

can sometimes be read almost like pseudo code.

As designed and implemented, the BSF4ooRexx

bidirectional Java bridge allows ooRexx programmers

to interact with the Java runtime environment and all

its classes. If a Java application uses the Java scripting

framework, then the names “rexx”, “Rexx”, “oorexx”

or “ooRexx” will use the ooRexx interpreter to execute

336___Proceedings of the Central European Conference on Information and Intelligent Systems

32nd CECIIS, October 13-15, 2021

Varaždin, Croatia

script code. For this feature a RexxScriptEngine

(Flatscher 2017a) got implemented which among other

things offers these special services:

 Rexx script annotations: these allow the

programmer to denote the names of the

SimpleBinding entries that should be fetched and

made available as local Rexx variables in the script

in the form of a specifically formed block comment

like: /* @get(names) */

 A RexxScriptEngine instance, unlike standard

ooRexx, will by default accumulate all public

routines and all public classes encountered in all of

the Rexx programs that have been already executed,

and will make them available to any Rexx scripts

that get invoked at a later time, irrespective whether

that program explicitly requires them.

 ooRexx will use the SimpleScriptContext fields

input (a java.io.Reader), output (a java.io.Writer)

and errorOutput (a java.io.Writer) as a replacement

for stdin, stdout and stderr. Accessing one of the

standard files stdin, stdout and stderr from Rexx

will cause a prefix to be injected (“REXXin>”,

“REXXout>”, “REXXerr>”) that makes it possible

to distinguish Rexx generated input or output from

Java generated input or output.

The external Rexx function BsfCreateRexx-

Proxy(rexxObject, optionalData, javaAbstractClass)

allows to extend any abstract Java class and to redirect

invocations of the abstract Java methods to the

supplied rexxObject by sending it appropriate Rexx

messages, supplying any Java arguments if necessary.

The result of that Rexx function is a Java object (an

instance of the dynamically created extended abstract

Java class).

The Rexx program main.rex in Fig. 3 defines the

Rexx class RexxApplication that implements the

abstract Java method start as an ooRexx method: it

fetches the primaryStage (a window), sets its title, uses

the javafx.fxml.FXMLLoader class to load the FXML

“hello.fxml” file in Fig. 2 above. When processing the

Button child element the onAction attribute will cause

the appropriate JavaFX onAction property to be set up

such that the Java scripting framework will be

employed to execute the Rexx code defined in the

onAction attribute each time the button gets pressed:

the code will cause the routine buttonClicked in

“hello_controller.rex” to be called which returns the

string “Clicked at:” concatenated with the current date

and time.

FXMLLoader will use the Java scripting framework

and employ the RexxScriptEngine when processing the

fx:script element with the source attribute set to

“hello_controller.rex” in order to execute that Rexx

program via the Java scripting framework. The

initialisation part of “hello_controller.rex” will output

the current version of ooRexx on the terminal and upon

return its public routine buttonClicked will be visible

to any Rexx code in event attributes (in this case

“onAction”) that gets executed thereafter in the context

of “hello.fxml”.

The JavaFX node that the load method returns is

then used to create a javafx.scene.Scene (the GUI)

which then gets placed on the primaryStage (a

window) which in turn will be made visible and shown

to the user. The method show of the primaryStage will

block the calling Rexx program until the JavaFX GUI

gets closed by the user. Upon return the start method

of the RexxApplication class concludes and the

application ends.

At the top of the Rexx program in Fig. 3 the

RexxApplication Rexx class gets instantiated and the

Rexx object is used for extending the Java class

javafx.application.Application thereby supplying its

start method. Sending the launch message to the

returned Java object will cause the JavaFX event

dispatcher thread (“JavaFX Application Thread”) to be

created and its start method to be invoked on that

newly created GUI thread which in turn will cause the

Rexx object to receive the Rexx message start with the

primaryStage as its argument which then executes the

statements as described above.

While the JavaFX GUI is up and running, the user

can interact with it by pressing the push button or

Figure 5. FXML Using Groovy (“hello.fxml”)

Proceedings of the Central European Conference on Information and Intelligent Systems___337

32nd CECIIS, October 13-15, 2021

Varaždin, Croatia

Figure 6. Groovy controller (“hello_controller.groovy”)

Figure 7. JavaFX GUI controlled by Groovy

closing the GUI by pressing the close button on the

frame.

The JavaFX GUI will react upon button press

events which will cause the onAction Rexx code in the

idButton element in the FXML file in Fig. 2 to be

executed using the Java scripting framework. The

Rexx script annotation (/* @get(idLabel) */) will fetch

the reference to the “idLabel” object and make it

locally available under the same variable name to

Rexx. The Rexx routine buttonClicked in Fig. 4 gets

called and returns a string “Clicked at:“ concatenated

with the date and time of its invocation which then is

assigned to the label’s text field.

For Java scripting languages that do not offer a

comparable functionality it would be possible to create

a Java class that extends javafx.application.

Application and takes command line arguments that

denote the scripting language and the name of a file that

contains the code to be run as the start method. With

this information the extended Application of such a

Java class could launch the application and in its own

implementation of the start method and run the script

code from the denoted file using the Java scripting

framework, supplying it the received

javafx.stage.Stage object. Upon return from executing

the script the implementation would then invoke the

show method of the Stage object to allow the user to

interact with the resulting JavaFX GUI.

Alternatively, one could forgo Java altogether by

creating an ooRexx script that takes its command line

arguments and implements the startup functionality as

described above.

3.5 Groovy, JRuby and Nashorn for

Controlling the GUI

For demonstration purposes the ooRexx program

“main.rex” gets used to launch the JavaFX application

where the single GUI gets controlled by other scripting

languages than ooRexx.

In essence the FXML file “hello.fxml” gets reused

but needs to be adjusted for each language by changing

the language PI, the onAction code and the name of the

controller file to be used accordingly. Note that also the

color of the button and label text gets changed in the

FXML files (attribute “textFill”) such that one can see

that such layout related changes can be done

declaratively, but also to get a visual feedback which

programming language is used to control the GUI. As

the same name, “hello.fxml”, gets used for all three

different scripting languages, it is necessary to keep the

files “main.rex”, “hello.fxml” and the respective

controller files in separate directories.

Groovy: Fig. 5 shows “hello.fxml” in which the

language PI defines “groovy” to be the programming

language used for all codings in event attributes like

“onAction”, such that JavaFX will use the Groovy

script engine to execute the code which got changed to

Groovy. The controller code for this GUI is stored in

“hello_controller.groovy” which the fx:script element

denotes as its source and which gets displayed in Fig.

6. JavaFX will execute that file, which will display the

Groovy version that gets used in the terminal. Upon

return the buttonClicked routine becomes accessible

from the context of the “hello.fxml” defined GUI, such

that the Groovy code in the “onAction” attribute can

invoke it and use the return value to set the text (a

string) of the “idLabel” object which is located

underneath the button as can be seen in Fig. 7. Note:

the file extension “.groovy” will be used to determine

with the help of the javax.script.ScriptEngineManager

the script engine that gets used to execute it. For this

sample at least groovy-3.0.8.jar and groovy-jsr223-

3.0.8.jar (Groovy 2021) need to be supplied on the

Java CLASSPATH. Fig. 7 was taken from a Windows

10 installation.

JRuby: Fig. 8 shows “hello.fxml” in which the

language PI defines “jruby” to be the programming

language used for all codings in event attributes like

“onAction”, such that JavaFX will use the JRuby script

engine to execute the code which got changed to

338___Proceedings of the Central European Conference on Information and Intelligent Systems

32nd CECIIS, October 13-15, 2021

Varaždin, Croatia

JRuby. The controller code for this GUI is stored in

“hello_controller.rb” which the fx:script element

denotes in its source attribute and which gets displayed

in Fig. 9. JavaFX will execute that file, which will

display the JRuby and Ruby version that gets used in

the terminal. Upon return the buttonClicked routine

becomes accessible from the context of the

“hello.fxml” defined GUI, such that the JRuby code in

the “onAction” attribute can invoke it and use the return

value to set the text (a string) of the “idLabel” object

which is located underneath the button as can be seen

in Fig. 10. Note: the file extension “.rb” will be used to

determine with the help of the

javax.script.ScriptEngineManager the script engine

that gets used to execute it. For this sample jruby-

complete-9.2.19.0.jar (JRuby 2021) was supplied on

the Java CLASSPATH. Fig. 10 was taken from an

Ubuntu Linux 5.3.01-generic installation.

Figure 8. FXML Changes for JRuby (“hello.fxml”)

Figure 9. JRuby controller (“hello_controller.rb”)

Figure 10. JavaFX GUI controlled by JRuby

Figure 11. FXML Changes for Nashorn

(“hello.fxml”)

Figure 12. Nashorn controller (“hello_controller.js”)

Figure 13. JavaFX GUI controlled by Nashorn

Nashorn (JavaScript): Fig. 11 shows “hello.fxml”

in which the language PI defines “nashorn” to be the

programming language used for all codings in event

attributes like “onAction”, such that JavaFX will use

the Nashorn script engine to execute the code which

got changed to Nashorn JavaScript. The controller

code for this GUI is stored in “hello_controller.js”

which the fx:script element denotes in its source

attribute and which gets displayed in Fig. 12. JavaFX

will execute that file, which will display the Nashorn

version that gets used in the terminal. Upon return the

buttonClicked routine becomes accessible from the

context of the “hello.fxml” defined GUI, such that the

JavaScript code in the “onAction” attribute can invoke

it and use the return value to set the text (a string) of

the “idLabel” object which is located underneath the

button as can be seen in Fig. 13. Note: the file extension

“.js” will be used to determine with the help of the

javax.script.ScriptEngineManager the script engine

that gets used to execute it. For this sample OpenJDK

11 was used, which includes Nashorn which claims to

be able to process files with the extension “js”.

However, starting with OpenJDK 15 Nashorn is not

part of the Java distribution anymore. Instead one

needs to download the Nashorn module (Nashorn

2021) and the module needs to be either added to the

Java startup command with the “--modulepath” option,

if feasible, or otherwise the Nashorn module needs to

be used for creating an OpenJDK distribution from a

collection of modules using the OpenJDK tool jlink.

Fig. 10 was taken from a Windows 10 installation. Also

note that the version information was retrieved using

the javax.script infrastructure as interestingly there

exists no standardized JavaScript API to retrieve it

otherwise.

3.6 The JavaFX “Address Book” Example

To promote using JavaFX and FXML for creating Java

applications a somewhat popular tutorial, „Creating an

Address Book with FXML”, was originally created by

Sun (Fedortsova 2021, Oracle 2021) and serves as the

basic application specification for another “Address

Book” tutorial that in addition also demonstrates

applying cascading stylesheets (CSS) (Jacob 2021) and

which needs at least JavaFX 8. All of these tutorials use

textual FXML definitions for the individual GUIs and

Java to implement all logic.

The full installation of BSF4ooRexx (BSF4ooRexx

2021) comes with an ooRexx only implementation of

the address book tutorial in (Jacob 2021) (cf.

Proceedings of the Central European Conference on Information and Intelligent Systems___339

32nd CECIIS, October 13-15, 2021

Varaždin, Croatia

bsf4oorexx/samples/JavaFX/fxml_99), includes

FXML files for defining the GUIs and uses the

DarkTheme.css cascading stylesheet for formatting the

GUIs accordingly. Unlike the Java tutorials, the

ooRexx implementation includes in addition the ability

to print out all addresses using another CSS file for

formatting, and a little “about” popup window. From

the GUI appearances it cannot be inferred, which

programming language, Java or ooRexx, was used to

implement the “Address Book” application (Flatscher

2017b).

In this way it serves as a proof-of-concept that it is

indeed possible to create quite complex JavaFX

applications with scripting languages. ooRexx just

serves as an initial example, the address book

application sample could be implemented in Groovy,

JRuby or Nashorn, or any other Java scripting

language.

4 Roundup and Conclusion

This article briefly introduced JavaFX, FXML and the

Java scripting framework from a bird-eyes view to

allow the reader to understand and relate to the

possibilities of employing this powerful and platform

independent GUI environment for scripting languages.

The scripting language used to introduce and

demonstrate the JavaFX infrastructure is the open-

source programming language ooRexx which is easy to

learn, to read and is available for all major platforms.

It gets successfully used to teach Business

administration students programming from scratch in a

four hour course in a single semester. The open-source

Java bridge BSF4ooRexx has been developed for

almost 20 years and has achieved a wealth of

functionality that gets exploited in this endeavor,

taking advantage of the possibility to run ooRexx code

using its RexxScriptEngine via the Java scripting

framework, making ooRexx also into a “Java scripting

language”.

As the Java scripting framework gets applied it is

also possible to use any other “Java scripting

language”, i.e. any programming language or any JVM

language that implements the

javax.script.ScriptEngine interface for controlling

FXML based GUIs. This article therefore used the

JVM languages Groovy, JRuby and Nashorn to

demonstrate how easy it is to control an FXML defined

GUI in these languages as well, even allowing

controllers to be used that get implemented in separate

files. As can be seen the JavaFX concepts introduced

with ooRexx can be directly applied and exploited in

any other Java scripting language.

If it is desired to create standalone JavaFX

applications with the means of a Java scripting

language (to forgo any need for programming in Java)

then such a scripting language needs to be able to

extend the JavaFX class javafx.application.Application

and implement its abstract method start. BSF4ooRexx

allows for implementing abstract Java methods in

ooRexx and even offers the ability to extend abstract

Java classes at runtime as demonstrated in Fig. 3 above.

Because of this it is not necessary for ooRexx

programmers to learn the Java programming language

at all in order to become able to launch ooRexx

programs that take advantage of the portable JavaFX

GUI environment for their GUI needs. It has been

demonstrated that it is even possible to combine

different scripting languages that control JavaFX

FXML defined GUIs by using ooRexx for launching

Groovy, JRuby and Nashorn controlled GUIs.

It is possible to define a set of FXML GUIs, each

controlled by programs written in different scripting

languages and hosted by any program that is able to

subclass the javafx.application.Application class and

implement its abstract start method. The Java scripting

framework in combination with FXML would even

allow a single FXML GUI to host and run script

programs written in different scripting languages from

different files that would be able to exchange data with

each other using the FXML related global scope

javax.script.ScriptContext. FXML GUIs can be

constructed by incorporating FXML GUIs, each

controlled by a different scripting language. It would

be interesting to explore the possibilities that exist with

this use case in mind.

JavaFX can also be used for creating mobile

applications specifically for Android and iOS (JavaFX

2021a). Further research and experiments would be

interesting that aim at using scripting languages with

JavaFX and that run on these specific mobile

platforms.

References

BSF4ooRexx (2021): ooRexx-Java Bridge, Download

Site for the Latest Beta Versions.

https://sourceforge.net/projects/bsf4oorexx/files/b

eta/20200928/

Cowlishaw, M. F. (1990): The REXX Language

(Second Edi.). New Jersey, Englewood Cliffs.

Epple, A. (2015): JavaFX 8. Heidelberg,

dpunkt.verlag.

Fedortsova, I. (2021): Creating an Address Book with

XML (JavaFX 2),

https://docs.oracle.com/javafx/2/fxml_get_started/

fxml_tutorial_intermediate.htm, last accessed

Eden-Rump, E. (2021): JavaFX Button Events and

How to Use Them. https://edencoding.com/javafx-

button-events-and-how-to-use-them/

Flatscher, R.G. (2010). The 2010 Edition of

BSF4ooRexx. In C. Davis & R. V. Jansen (Eds.),

Proceedings of the 2010 International Rexx

Symposium (pp. 1-35). Rexx Language

Association, Amsterdam.

340___Proceedings of the Central European Conference on Information and Intelligent Systems

32nd CECIIS, October 13-15, 2021

Varaždin, Croatia

Flatscher, R.G. (2013): Introduction to Rexx and

ooRexx. Vienna: Facultas.

Flatscher, R.G. (2017a): RexxScript – Rexx Scripts

Hosted and Evaluated by Java (Package

javax.script). In C. Davis & R. V. Jansen (Eds.),

Proceedings of the 2017 International Rexx

Symposium (pp. 1-19). Rexx Language

Association, Amsterdam.

https://www.rexxla.info/events/2017/presentations

/201704-RexxScript-Article.pdf

Flatscher, R.G. (2017b): JavaFX for ooRexx. In C.

Davis & R. V. Jansen (Eds.), Proceedings of the

2017 International Rexx Symposium (pp. 1-43).

Rexx Language Association, Amsterdam.

https://www.rexxla.info/events/2017/presentations

/201711-ooRexx-JavaFX-Article.pdf

Flatscher, R.G. (2018): Anatomy of a GUI (Graphical

User Interface). In C. Davis & R. V. Jansen (Eds.),

Proceedings of the 2018 International Rexx

Symposium (pp. 1-40). Rexx Language

Association, Aruba.

Flatscher, R.G., Müller G. (2021): „Business

Programming“ – Critical Factors from Zero to

Portable GUI Programming in Four Hours. In M.

Kolaković & T. Horvatinović. & I. Turčić (Eds.),

Proceedings of the 6th Business & Entrepreneurial

Economics 2021 (BEE 2021) (pp. 76-82).

University of Zagreb, Faculty of Economics and

Business, Croatia.

Groovy (2021): Groovy Scripting Language,

Download Site.

https://groovy.apache.org/download.html

Jacob, M. (2021): JavaFX Tutorial.

https://code.makery.ch/library/javafx-tutorial/

JavaFX (2021a): JavaFX Resources.

https://openjfx.io/

JavaFX (2021b): Wikipedia JavaFX.

https://en.wikipedia.org/wiki/JavaFX

JavaFX Script (2021): Wikipedia JavaFX Script.

https://en.wikipedia.org/wiki/JavaFX_Script

Jenkov, J. (2021): JavaFX FXML,

http://tutorials.jenkov.com/javafx/fxml.html

JRuby (2021): JRuby Scripting Language, Download

Site. https://www.jruby.org/download

JSR-223 (2021): JSR-000223 Scripting for the

JavaTM Platform.

https://jcp.org/aboutJava/communityprocess/final/j

sr223/index.html

JVM Languages (2021): Wikipedia List of JVM

Languages.

https://en.wikipedia.org/wiki/List_of_JVM_langua

ges

Nashorn (2021): OpenJDK JavaScript Language.

https://github.com/openjdk/nashorn

ooRexx (2021): ooRexx Scripting Language,

Download Site for the Latest 5.0 Beta Installation

Packages.

https://sourceforge.net/projects/oorexx/files/oorex

x/5.0.0beta/

OpenFX (2021): Homepage.

https://wiki.openjdk.java.net/display/OpenJFX/Ma

in

OpenJDK (2021): Homepage. http://openjdk.java.net

Oracle (2021a): Creating an Address Book with XML

(JavaFX 8),

https://docs.oracle.com/javase/8/javafx/fxml-

tutorial/fxml_tutorial_intermediate.htm

Oracle (2021b): The Java Scripting API.

https://docs.oracle.com/javase/8/docs/technotes/gu

ides/scripting/prog_guide/api.html#CDEGJDJF

Pomarolli, A. (2021): JavaFX FXML Tutorial,

https://examples.javacodegeeks.com/desktop-

java/javafx/fxml/javafx-fxml-tutorial/

Ruzicka, V. (2019): JavaFX Tutorial: FXML and

SceneBuilder.

https://www.vojtechruzicka.com/javafx-fxml-

scene-builder/

SceneBuilder (2021a). SceneBuilder Download Site.

https://gluonhq.com/products/scene-builder/

SceneBuilder (2021b): Basic JavaFX project with

Scene Builder.

https://github.com/gluonhq/scenebuilder/wiki/Basi

c-JavaFX-project-with-Scene-Builder

Proceedings of the Central European Conference on Information and Intelligent Systems___341

32nd CECIIS, October 13-15, 2021

Varaždin, Croatia

