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Abstract. In today’s business, decision-making is 

heavily dependent on algorithms. Algorithms may 

originate from operational research, machine 

learning, but also decision theory. Regardless of their 

origin, the decision-maker may create unwanted 

disparities regarding race, gender, or religion. These 

disparities may further lead to legal consequences. To 

mitigate unwanted consequences one must adjust 

either algorithms or decisions. In this paper, we adjust 

the popular decision-making method TOPSIS to 

produce utility scores without disparate impact. This is 

done is by introducing “fairness weight“ that is used 

for the calculation of the utility function of TOPSIS 

method. Fairness weight should provide the smallest 

possible intervention needed for a decision without 

disparate impact. The effectiveness of the proposed 

solution is shown on the synthetic dataset, as well as 

on the exemplar dataset regarding criminal justice. 

 
Keywords. Algorithmic decision-making, TOPSIS, 

Disparate impact, Fairness in decision-making 

1 Introduction 

The impact of algorithms on business decision-making 

is immense in recent years. Managers tend to spend 

less time preparing the decision process, less effort in 

modeling decisions, but gaining more trust in 

algorithms and their decisions. As a result, the usage of 

algorithms in modern business is increasing and 

important decisions are being made automatically, 

without greater supervision of the decision-maker 

(Grgić-Hlača et al., 2018). One of the reasons for the 

minor involvement of the decision-maker is the fact 

that decision-making methods, especially ones that 

originate from the data mining and machine learning 

area do not have the power of interpretation and 

explanation of the decision (Dwork et al., 2020). These 

algorithms have shown experimentally that they 

superior to the human processing of data. More 

specifically, the cost of learning a decision model is 

lower than hiring an expert, the accuracy is greater than 

the one of an expert, and the decision-making process 

is faster (Corbett-Davies et al., 2017). 

However, the rise of algorithmic decision-making 

raises a concern about the impact of algorithms on 

everyday lives. One can observe the injustices that 

algorithms have made in recent years. Algorithmic bias 

is present in many areas, not solely related to business 

applications, but social applications of algorithmic 

decision-making as well. One interesting application is 

Google Ads that is shown to promote higher-paying 

jobs (from STEM fields) to male individuals rather 

than female individuals (Lambrecht & Tucker, 2018). 

Although there is a rational explanation on why male 

individuals are being promoted (due to historical 

cultural factors male individuals are earning more 

compared to female individuals), one must ask a 

question whether historical injustices should be 

replicated in algorithmic decision-making? It is shown 

that not only do algorithms replicate historical bias, but 

also amplifies it (Barocas & Selbst, 2016). There are 

even examples of social unrest due to algorithmic 

decision-making. A crime risk assessment score named 

Post Conviction Risk Score (PCRA) is developed to 

help judges (as decision-makers) whether to convict a 

person or not. However, the benefits of such systems 

are neglected by an adverse effect. More specifically, 

African-American offenders have a 13.5 percent 

greater risk score compared to White-Caucasian 

offenders (Skeem & Lowenkamp, 2016). Due to many 

such (historical) biases that exist in the data, and 

decision-making as well, racial and social unrest are 

visible today (Szetela, 2020). Therefore, in recent years 

an increased effort is made to adjust algorithms to 

correct historical injustices and promote fairness and 

social welfare (Kasy & Abebe, 2021). 

In this paper, we aim to adjust one of the most 

popular Multi-Criteria Decision-Making (MCDM) 

method called Technique for Order Preference by 

Similarity to Ideal Solution (TOPSIS). This technique 

is applied in many different industries and has shown 

that it can successfully solve the most complex 
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decision-making problems (Behzadian et al., 2012). 

Compared to other MCDM algorithms it calculates the 

cardinal utility of alternatives: In other words, TOPSIS 

method provides a complete ranking of alternatives. 

One of the reasons why TOPSIS gained popularity is 

due to an intuitive explanation of the results. More 

specifically, the best alternative is the one that is at the 

same time the closest to the “ideal” solution, and 

farthest from the “worst” solution. However, even if 

the decision-making process is well defined, one can 

create a disparate impact regarding gender or race 

(Barocas & Selbst, 2016; Lepri et al., 2018).  

To mitigate unwanted bias we introduce new 

variables called “fairness weights”. Fairness weights 

aim to reduce the effect of criteria if that criteria 

produces unfairness in results. These weights are being 

applied during the calculation of the distance of 

alternatives to the ideal and the worst solution. The 

problems we faced during the creation of the model are 

the non-convexity of TOPSIS utility scores and the 

need to satisfy the decision-maker criteria weights. 

Non-convexity of utility scores is tackled by using 

logarithmic transformation. Because of that non-

convex problem is transformed into a concave problem 

that can be solved using convex optimization 

techniques. The need to satisfy the decision-maker 

criteria weights is fulfilled by the definition of the 

optimization procedure that constrains fairness while 

minimizing the change in the decision-maker's original 

problem setup. 

The remainder of the paper is structured as follows. 

In Section 2 we provide related work needed for the 

definition of fairness in the decision-making process. 

In Section 3 we explain the proposed method, and 

experimental setup as well. In Section 4 we present the 

results and the discussion of the results. Finally, we 

conclude the paper in Section 5. 

2 Related Work 

The related work section consists of two subsections, 

one explaining fairness in decision-making, and the 

other explaining the TOPSIS method. 

2.1 Fairness in decision-making 

In the majority of MCDM methods, the decision-maker 

aggregates criteria into composite criteria that are 

regarded as a utility of alternative (Zavadskas et al., 

2014). However, the utility function can result in a 

ranking of alternatives that are deemed as unfair. On 

the other side, dealing with unfairness is not common 

in MCDM and motivation can be found in machine 

learning and economic theory (Hutchinson & Mitchell, 

2019). 

Many discussions from political philosophy regard 

fairness as systematic discrimination made by 

decision-maker based on a race, gender, or religion, or 

more generally on a personal attribute declared as a 

sensitive attribute (Dwork et al., 2012). A sensitive 

attribute is often declared with 𝑠 and it presents 

affiliation of an individual with the group. More 

specifically, an individual can belong to a group or not, 

i.e. person is of the male gender, or not. Further, since 

unfair decisions result in different expected outcomes 

between groups of people one can simplify the groups 

into two groups, namely privileged group (𝑠 = 0) and 

discriminated group (𝑠 = 1). In other words, unfair 

decisions result in privileged group individuals get the 

higher expected utility of a decision-making method 

than discriminated group individuals.  

The reason why tackling unfairness in algorithmic 

decision-making is the source of unfairness. More 

specifically, decision-making methods model the 

decision-maker's beliefs regarding the problem at 

hand, thus model biases that a decision-maker has. 

These biases might be intentional (i.e. decision-maker 

favors male individual for job place), or not. Similarly, 

data can inherit historical and cultural biases (i.e. 

females tend to have lower working experience due to 

maternal leave). Regardless of the source of unfairness, 

the responsibility of the decision is on the decision-

maker. (Köchling & Wehner, 2020) 

If we were to measure the level of unfairness, we 

would measure the disparate impact of the decision-

making process. Mathematically, the disparate impact 

can be calculated using the following formula: 

 

𝐷𝐼 =
𝐸(𝑢|𝑠=1)

𝐸(𝑢|𝑠=0)
                              (1) 

 

Where 𝐸 presents mathematical expectation of the 

utility score 𝑢 that an individual obtains from the 

decision-making method. With an assumption that 

discriminated group individuals have a lower expected 

value of getting the desired outcome, the value of 𝐷𝐼 is 

bounded to the range [0, 1], where 𝐷𝐼 = 0 present the 

total unfair decision-making process (every individual 

from the discriminated group have 𝑢 = 0) and 𝐷𝐼 = 1 

present the fair decision-making process. It is worth 

noticing that the decision-making process can have 

some level of discrimination. However, this should be 

explainable either as a random effect (a very small 

value) or as a necessity of a decision-making process 

(Grgić-Hlača et al., 2020; Kasy & Abebe, 2021).  

2.2 TOPSIS 

Algorithmic decision-making is a subject of interest for 

many decades (Maček et al., 2020). In the decision 

theory, many methods are developed to model the 

utility (or preferences) of the decision-maker regarding 

alternatives. One of the most prominent method for 

MCDM is TOPSIS. (Abdel-Basset et al., 2020). 

TOPSIS method finds the ranking of alternatives 

through the calculation of the positive ideal solution 𝑆𝑖
+ 

and negative ideal solution 𝑆𝑖
−, whereby the most 

suitable alternative is geometrically closest to the 

positive ideal and farthest from the negative ideal 
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solution. TOPSIS can be performed using the 

following steps (Çelikbilek & Tüysüz, 2020): 

1. Establishing a decision matrix 

The decision matrix has the structure as presented 

in (2). 

𝑀 =

 𝐶1 𝐶2 … 𝐶𝑛

𝐴1

𝐴2

⋮
𝐴𝑚

[

𝑥11
𝑥12 … 𝑥1𝑚

𝑥21

⋮
𝑥𝑛1

𝑥22

⋮
𝑥𝑛2

…
⋱

𝑥2𝑚

𝑥𝑛𝑚

]
           (2) 

 

where 𝐴𝑖 represent an alternative 𝑖, 𝐶𝑗 criteria 𝑗, and 

𝑥𝑖𝑗  value of alternative 𝑖 for criteria 𝑗. In total, the 

decision matrix consists of 𝑚 alternatives and 𝑛 

criteria. 

2. Normalization of the decision matrix using 𝐿2 

norm; 

More specifically, each value 𝑥𝑖𝑗  in the decision 

matrix is normalized to range of values [0, 1] using 

formula (3). 

 

𝑥𝑖𝑗
𝑁 =

𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2  𝑚

𝑖=1

                                (3) 

 

3. Calculation of a weighted normalized decision 

matrix; 

By multiplying each normalized value of the 

decision matrix with the appropriate weight of the 

criteria, as presented in (4), one obtains a weighted 

normalized decision matrix.  

𝑣𝑖𝑗 = 𝜔𝑗 × 𝑥𝑖𝑗
𝑁                                (4) 

 

4. Calculating the positive ideal and negative ideal 

solutions; 

Once a weighted normalized decision matrix is 

calculated, one can obtain the best possible and the 

worst possible value that can be obtained in the 

decision matrix using (5), (6), (7), and (8). The ideal 

positive solution 𝐼𝑃𝑆 is defined as: 

 

𝐼𝑃𝑆 = {𝑣1
+, 𝑣2

+, … , 𝑣𝑛
+}                    (5) 

where: 

𝑣𝑗
+ = (𝑚𝑎𝑥 ∧ 𝑚𝑖𝑛 𝑣𝑖𝑗 ↔ 𝑗 = 1, … , n)         (6) 

 

for 𝑗 representing criteria. More specifically, if a 

criteria is of benefit type, one selects the largest 

possible value, while if a criteria is of cost type, one 

selects the worst possible value.  

The ideal negative solution 𝐼𝑁𝑆 is a 𝐼𝑃𝑆 

counterpart defined as: 

 

𝐼𝑁𝑆 = {𝑣1
−, 𝑣2

−, … , 𝑣𝑛
−}                    (7) 

where: 

𝑣𝑗
− = (𝑚𝑖𝑛 ∧ 𝑚𝑎𝑥 𝑣𝑖𝑗 ↔ 𝑗 = 1, … , n)         (8) 

 

5. Calculating distance of each alternative from ideal 

positive and ideal negative solutions; 

The most suitable distance metric for the TOPSIS 

method (given the 𝐿2 norm used in step 2) is Euclidean 

distance. Thus, the distance from the 𝐼𝑃𝑆 and 𝐼𝑁𝑆 is 

calculated for each alternative using (9) and (10). 

 

𝐷𝑖
+ = √∑ (𝑣𝑖𝑗 − 𝑣𝑗

+)
2𝑛

𝑗=1 , 𝑖 = 1,2, … , 𝑚        (9) 

𝐷𝑖
− = √∑ (𝑣𝑖𝑗 − 𝑣𝑗

−)
2𝑛

𝑗=1 , 𝑖 = 1,2, … , 𝑚      (10) 

 

where 𝐷𝑖
+, 𝐷𝑖

− are distances from the positive ideal 

and negative ideal solution, respectively. 

 

6. Utility calculation for each alternative. 

Finally, for each alternative one calculates the 

closeness coefficient 𝐶𝐶 that represents the utility 

score of an individual using (11). 

 

𝐶𝐶𝑖 =
𝐷𝑖

−

𝐷𝑖
−+𝐷𝑖

+                              (11) 

 

The best possible value of 𝐶𝐶 is one, that would be 

a dominant alternative (an alternative is the same as 

𝐼𝑃𝑆). While the worst possible score is zero, that 

represents a completely dominated alternative (an 

alternative is the same as 𝐼𝑁𝑆). 

The goal of this paper is to integrate the disparate 

impact measure into the TOPSIS method in such a 

manner that a decision-maker does not change his or 

her opinion about criteria weights. As a suitable 

method for such integration, we propose a convex 

optimization procedure that optimizes for minimum 

change in distance measures with disparate impact 

constraint. More specifically, we introduce new 

variables that can be regarded as “fairness weights”. 

These weights control the disparate impact made by the 

decision-maker in the TOPSIS method. 

3 Methodology 

The methodology section consists of two parts. In the 

first part, we explain the proposed methodology. Next, 

we explain the experiments that are conducted. 

3.1 Fair TOPSIS method 

The inclusion of the disparate impact into decision-

making methods requires the development of adequate 

mathematical modeling. Therefore, a convex 

mathematical model is proposed. 

First, we explain the disparate impact integration. 

By observing the formula (1), one can notice that the 

measure is non-convex. Non-convexity poses a 

problem in optimization procedure since it requires 

global optimization techniques, such as meta-

heuristics, that do not warranty the optimal solution 

(Gandomi et al., 2013). In that case, one would like to 

convert (i.e. approximate sufficiently well) the non-

convex formulation to a convex one, or even better to 

a linear one. By using the trick presented in (Zafar et 

al., 2019; Radovanović et al., 2020) we convert 

 
 
Proceedings of the Central European Conference on Information and Intelligent Systems_____________________________________________________________________________________________________277

 
32nd CECIIS, October 13-15, 2021
_____________________________________________________________________________________________________  

Varaždin, Croatia



disparate impact into a linear form. More specifically, 

the disparate impact can be calculated in the linear 

form using (12). 

 

𝑆𝑃 = 𝐸(𝑢|𝑠 = 1) − 𝐸(𝑢|𝑠 = 0)              (12) 

 

The measure presented in (12) is known as 

statistical parity. The mathematical expectation of the 

utility score can be calculated as in (13). 

 

𝑆𝑃 =
1

∑ 𝑠𝑖
𝑚
𝑖=1

∑ 𝑠𝑖𝑢𝑖
𝑚
𝑖=1 −

1

∑ (1−𝑠𝑖)𝑚
𝑖=1

∑ (1 − 𝑠𝑖)𝑢𝑖
𝑚
𝑖=1  (13) 

 

However, passing through two sums may be 

inefficient and can be reduced, without the loss of 

precision, into (14). 

 

𝑆𝑃 = ∑ (𝑠𝑖 − 𝑠̅) 𝑢𝑖
𝑚
𝑖=1                    (14) 

 

where 𝑠̅ present the ratio of discriminated 

individuals in the decision matrix. Since 𝑠 can take 

values zero and one, 𝑠̅ can be calculated as an average 

value of vector 𝑠. An explanation of the (14) is the 

following. If an alternative belongs to the 

discriminated group (𝑠𝑖 = 1), then it “positively 

discriminates” and increases the value (since 𝑠𝑖 > 𝑠̅) of 

statistical parity proportionally by 𝑢𝑖. However, if an 

alternative belongs to the privileged group (𝑠𝑖 = 0), 

then it “negatively discriminates” and decreases the 

value (since 𝑠𝑖 < 𝑠̅) of statistical parity proportionally 

by 𝑢𝑖. 

Having in mind that one can efficiently measure the 

level of discrimination, we can formally define the way 

we control discrimination. One way we can control for 

discrimination is by introducing the “fairness weights” 

that can be used during the calculation of 𝐷𝑖
+ and 𝐷𝑖

−. 

More specifically, we can present Euclidean distance 

using linear algebra as presented for 𝐷𝑖
+ in (15). 

 

𝐷𝑖
+ = √(𝑣𝑖 − 𝑣+)T(𝑣𝑖 − 𝑣+)                (15) 

 

Then, we can add fairness weights vector 𝑤 that 

controls for fairness using (16). 

 

𝐷𝑖
+ = √(𝑣𝑖 − 𝑣+)T(𝑤𝐼)(𝑣𝑖 − 𝑣+)            (16) 

 

where 𝐼 presents a diagonal unit matrix. The same 

set of weights, as well as the same calculation, is used 

for 𝐷𝑖
−. More specifically, 𝐷𝑖

− is calculated as in (17). 

 

𝐷𝑖
− = √(𝑣𝑖 − 𝑣−)T(𝑤𝐼)(𝑣𝑖 − 𝑣−)           (17) 

 

If we integrate statistical parity (14) and newly 

defined 𝐷𝑖
+ and 𝐷𝑖

− we obtain statistical parity as 

presented in (18). 

 

𝑆𝑃 = ∑ (𝑠𝑖 − 𝑠̅) 
𝐷𝑖

−

𝐷𝑖
−+𝐷𝑖

+
𝑚
𝑖=1                    (18) 

 

However, this is still non-convex. The first problem 

we face is that both 𝐷𝑖
+ and 𝐷𝑖

− square roots are making 

the variable we want to optimize non-linear. More 

importantly, the utility function that uses 𝑤 would 

make the problem non-convex. If we observe formula 

(18), we can see that the weights vector exists in both 

numerator and denominator of the closeness 

coefficient ratio. To mitigate this problem, we can use 

the logarithm of the closeness coefficient, and the 

squared distances. Since these distances have non-

negative values and it is not expected to have an 

alternative that is dominated by all others (i.e. an 

alternative is equal to 𝐼𝑁𝑆) the logarithm will always 

be defined. The result is presented in formula (19). 

 

𝑆𝑃 = ∑ (𝑠𝑖 − 𝑠̅)(log(𝐷𝑖
−2

) − log(𝐷𝑖
−2

+ 𝐷𝑖
+2

)𝑚
𝑖=1  (19) 

 

Squared distances are used to cancel the square 

roots while calculating the distances. Since these 

transformations are monotonic, they will still represent 

utility scores of alternatives just in different 

measurement units. Further, the logarithmic 

transformation makes coefficients in terms of 

logarithms, more specifically in concave form. 

Finally, we can set our mathematical model. Since 

fairness weights alter the initial weights that the 

decision-maker expressed, one would like to change 

them as little as possible to obtain a fair solution. 

Therefore, our optimization problem can be expressed 

as in (20). 

 

min  ∑(1𝑗 − 𝑤𝑗)
2

𝑛

𝑗=1

 

𝑠. 𝑡.                                                          (20) 

∑(𝑠𝑖 − 𝑠̅)(log(𝐷𝑖
−2

) − log(𝐷𝑖
−2

+ 𝐷𝑖
+2

))

𝑚

𝑖=1

− 𝑡 ≥ 0 

𝑤𝑗 ≥ 0,   𝑗 = 1, … , 𝑛 

𝑤𝑗 ≤ 1,   𝑗 = 1, … , 𝑛 

 

where 1 presents a vector of ones with length 𝑛, and 

𝑡 the allowable discrimination. It can be observed that 

the fairness weights 𝑤 are bounded between zero and 

one. Value 0 indicates that a criteria is completely 

unfair and should be discarded from the decision-

making process, while value 1 indicates that a criteria 

does not make unwanted discrimination between 

alternatives. By setting the weight to a value lower than 

1, we deviate from the beliefs of the decision-maker. 

Since decision-making should help the decision-maker 

express his/her beliefs, we propose minimization of  

expressed beliefs deviation subject to the fairness 

constraints. The fairness constraint allows for some 

level of discrimination through the parameter 𝑡. The 

interpretation of the parameter 𝑡 is that the average 

expected logarithm of utility adjusted for the imbalance 

in sensitive attribute 𝑠 should be at most 𝑡.  

The decision-maker can, by using this 

mathematical model, promote positive discrimination 
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in the decision-making process by setting parameter 𝑡 

to be a large positive value. In that case, the average 

expected utility score of the discriminated group would 

be higher than the expected utility score of the 

privileged group. However, one should be careful not 

to overcompensate expected utility when promoting 

fairness and positive discrimination. (Binns, 2018; 

Finocchiaro et al., 2021) 

Finally, when fairness weights 𝑤 are obtained they 

are applied in the TOPSIS method for the calculation 

of the 𝐷𝑖
+ and 𝐷𝑖

− as presented in (16) and (17), and 

further for calculation of the closeness coefficient as 

presented in (11). 

3.2 Experimental Setup 

To test the proposed method we experiment on 

synthetic data, as well as on the exemplar dataset 

regarding criminal justice. 

A synthetic dataset has a small number of 

alternatives and is used to show how well the proposed 

methodology works. It consists of six criteria and eight 

alternatives. The data is presented in Table 1. Above 

the criteria name, one can notice the orientation of the 

criteria. Value max indicates benefit criteria, while 

value min indicates cost criteria. As a criteria 

weighting scheme, we selected uniform weights (all 

criteria have the same weight). During the creation of 

this dataset, criteria C1 and C3 are intentionally created 

to be unfair. This is done with the idea that proposed 

methodology identifies those criteria and assigns them 

a low score. 

 

Table 1. Synthetic dataset 

 

 s 
max 

C1 

max 

C2 

min 

C3 

max 

C4 

max 

C5 

min 

C6 

A1 1 6 8 2 1 9 2 

A2 1 7 2 7 4 1 3 

A3 1 3 5 9 9 5 3 

A4 1 1 5 9 1 9 7 

A5 0 9 3 3 2 3 6 

A6 0 6 7 2 4 2 3 

A7 0 5 7 4 9 4 1 

A8 0 2 6 6 3 7 3 

 

Another dataset used regards criminal justice 

software called COMPAS (Dressel & Faried, 2018). 

This software is used in the US and caused a lot of 

discussion regarding racial unfairness in the decision-

making process. Interested readers are referred to 

(Washington, 2018). The dataset consists of 361 

individuals (more specifically, randomly selected 5% 

of all individuals) that committed a felony, and the 

software is used to predict whether an individual is 

likely to commit another one in the near future. If an 

individual is ranked higher, then an individual is sent 

to a jail sentence. It is assumed that software is more 

likely to rank African-Americans higher compared to 

White-Caucasians, thus more likely to be sentenced. 

This is due to historical biases and injustices that are 

inserted into the data collection process. For the sake 

of the paper, we selected six criteria. More specifically, 

age, number of juvenile felony crimes, number of 

juvenile misdemeanor crimes, number of other juvenile 

crimes, number of priors felony counts, and charge 

degree. All of the criteria are benefit criteria, and race 

on an individual presents a value of the sensitive 

attribute. In this case, the White-Caucasian race is the 

privileged group (where a lower utility score is 

expected), while the other races present the 

discriminated group (having a higher expected utility 

score). Weights are equal for all six criteria. 

We measure and report average changes in utility 

scores for both the discriminated and the privileged 

groups after performing the proposed mathematical 

model. Also, as a measure of fairness, we report the 

disparate impact before and after performing the model 

optimization using the proposed approach. We also 

discuss the fairness weights obtained from the 

optimization procedure. 

It is worth mentioning that the discrimination 

parameter 𝑡 is going to be set on the value to ensure 

that 𝐷𝐼 > 0.75. This means that average expected 

logarithmic utility scores adjusted for the imbalance in 

the counts of the alternatives based on the sensitive 

attribute should be considered as a random effect 

(MacCarthy, 2017; Raub, 2018). This value is obtained 

using grid search of parameter 𝑡. 

4 Results and Discussion 

The results for the synthetic dataset are presented in 

Table 2. It can be observed that the proposed 

methodology has not resulted in an increase of utility 

scores of all alternatives in the discriminated group, nor 

a decrease of utility scores of all alternatives in the 

privileged group. Therefore, this cannot be deemed 

fully as affirmative action, but as promoting equity 

(Reich, 2021; Finocchiaro et al., 2021). 

In both the discriminated and privileged groups, 

utility scores are increased for two alternatives and 

decreased for two alternatives. However, the average 

increase is higher for the discriminated group. More 

specifically, the average utility score increased from 

0.4250 to 0.4497 for the discriminated group (an 

increase of 0.0247 in the utility score). On the other 

hand, the average utility score decreased from 0.5925 

to 0.5238 for the privileged group (a decrease of 0.0688 

in the utility score). 

Fairness increased as well. The disparate impact is 

0.7173 if the original TOPSIS method is used, while it 

is 0.8587 after using the proposed method. This 

indicates that the proposed methodology solves the 

problem of unwanted discrimination in the decision-

making process. 
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Table 2. Results of the TOPSIS method and the 

proposed method on the synthetic dataset 

 

 s TOPSIS 
Proposed 

method 
𝛥 utility 

A1 1 0.7219 0.6544 - 0.0675 

A2 1 0.3836 0.2633 - 0.1204 

A3 1 0.3600 0.5189 0.1590 

A4 1 0.2347 0.3624 0.1278 

A5 0 0.4376 0.1251 - 0.3125 

A6 0 0.6229 0.4849 - 0.1380 

A7 0 0.8367 0.8738 0.0371 

A8 0 0.4731 0.6114 0.1383 

 

By inspecting the fairness weights we can notice 

that one criteria is considered to be completely unfair. 

That is criteria C1. A very low score (0.1649) holds for 

criteria C3 too. These two criteria are intentionally 

defined to be discriminative. Therefore, the proposed 

method managed to find unfair criteria and remove 

their influence in the decision-making process. Other 

criteria are considered fair, where criteria C6 obtained 

weight 0.7683, C2 weight 0.9245, while C3 and C4 

weight 1.  

After testing the proposed method on the synthetic 

dataset, we experimented on the criminal recidivism 

dataset, namely the COMPAS dataset. In this dataset, 

the discriminated group receives a greater expected 

utility score since a greater utility score presents an 

undesired outcome. For convenience, we set that 𝑠 = 1 

present White-Caucasians, and 𝑠 = 0 other races. Due 

to the presence of very high values for criteria (outliers) 

and high independence between criteria (correlations 

are low), utility scores are very low overall. 

If we inspect the results from the original TOPSIS 

method, we can observe that there is a very high 

disparate impact. More specifically, other races are 

twice as likely to get undesired outcomes as the White-

Caucasian race with 𝐷𝐼 = 0.5398. Utility scores are 

very low for both privileged and discriminated groups, 

and they are 𝐸(𝑢|𝑠 = 1) = 0.0149 and 𝐸(𝑢|𝑠 = 0) =
0.0275. After performing the proposed optimization 

for the fairness we improved to 𝐷𝐼 = 0.7512. This 

level of fairness is boundary fair (for some legal 

documents it would require an additional explanation). 

Regardless of that, fairness increased by over 20%, 

which means that intervention in the decision-making 

method works. Further, 𝐸(𝑢|𝑠 = 1) = 0.0160 and 

𝐸(𝑢|𝑠 = 0) = 0.0213 which means that both groups 

tend to be more equal. White-Caucasian individuals 

have their utility score increased by 1% on average, 

while other races lowered their utility score by 6% on 

average. One interesting finding is that 36.56% of 

White-Caucasian individuals increased their utility 

score, while 63.44% reduced the score. That indicates 

that a minority of the privileged individuals have their 

score greatly increased (since on average utility score 

increased). On the other side, other race individuals 

reduced their utility score in 77.61% of the cases and 

increased utility score by 22.39%. 

Inspection of fairness weights discovers that some 

criteria are considered unfair. Those are a number of 

juvenile misdemeanor crimes (fairness weight equal to 

zero), and a number of priors felony counts (fairness 

weight equal to 0.0423). These factors are suspected to 

increase the racial injustices in the US (Abrams et al., 

2021; Beckman & Rodriguez, 2021). Being “young 

and black” makes one more likely to be suspected and 

reported for crime or felony (Leiber & Johnson, 2008). 

Due to historical biases that exist in culture, young 

African-Americans (and other races as well) are more 

times reported for felonies than White-Caucasians. It is 

suspected that White-Caucasians are not being 

reported, thus making these decisions based on these 

criteria is biased and increases the social injustices. 

Other criteria are fair in respect of decision-making 

with fairness weights one for age (the model is not 

making age discrimination), 0.9467 for a number of 

juvenile felony counts, 0.9191 for a number of juvenile 

other felonies, and 0.9609 for charge degree. 

Based on two examples, one on a synthetic dataset 

and another on a real-world dataset we showed that it 

is possible to introduce fairness into MCDM models, 

more specifically the TOPSIS method. The model gets 

an additional level of interpretation with fairness 

weights. The decision-maker may inspect these 

weights and correct future decisions to promote 

equality and equity. Due to the hard fairness constraint, 

we can ensure that the decision made by the TOPSIS 

method is fair. Finally, the proposed approach is set as 

convex optimization, thus gradient-based optimization 

procedures can find an optimal or near-optimal 

solution. 

However, setting fairness weights to zero might be 

inappropriate due to omitting criteria in decision-

making. More specifically, if criteria has the fairness 

weight equal to zero then it is not influencing the utility 

score regardless of the initial weight that the decision-

maker provided. During the calculation of the 𝐷𝑖
+ and 

𝐷𝑖
−, and further, during the calculation of utility score, 

these criteria are multiplied by zero. To ensure that 

criteria influence decision-making, one would add a 

parameter that expresses the lower bound of the 

fairness weight. More specifically, one could set 𝑤𝑗 ≥

𝑙, where 𝑙 is the lowest acceptable fairness weight one 

criteria can obtain. 

Our  proposed approach has some limitations. One 

limitation is in the optimization procedure. Since a hard 

fairness constraint is used, the optimization procedure 

might result in an unfeasible solution. In that case, 

either a grid search of discrimination parameter 𝑡 

should be used, or a solution can be found or 

approximated using bargaining solutions (Haake & 

Trockel, 2020). 
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5 Conclusions 

The issue of unfair decisions and injustices made by 

algorithms forced data scientists and algorithm 

designers to adjusted methodologies and include some 

notion of fairness during the decision model creation. 

This growing field is present in the field of automated 

decision-making. However, adaptations of the 

traditional decision-making algorithms are rarely to be 

found.  

This paper introduces a fairness constraint into the 

TOPSIS method. To integrate this constraint, we 

transformed a non-linear constraint into a convex form 

using a linear approximation of the disparate impact 

measure, and a logarithmic transformation of the 

closeness coefficient (utility score) with the quadratic 

distance measures in the TOPSIS method. The fairness 

constraints introduce new variables called fairness 

weights that measure how fair a criteria is. Those 

weights are bounded between zero (criteria is unfair) 

and one (criteria is fair). Once these weights are found, 

the calculation of the utility score is adjusted by 

reducing the impact of unfair criteria. The usefulness 

of the proposed method is tested both on the synthetic 

data and (for decision-making methods large) data for 

criminal justice. 

However, there are some unanswered questions in 

the methodology. Due to the transformation of the 

TOPSIS utility score, the interpretation of the 

discrimination parameter 𝑡 is altered. In future work, 

we plan to provide a more detailed analysis (both 

theoretical and experimental) about how to select 

parameter 𝑡 to ensure satisfactory or needed disparate 

impact. In addition, we plan to test the effect and 

stability of parameter 𝑡 for various situations. For 

example, whether the disparate impact remains stable 

for similar problems (i.e. by performing bootstrap 

sampling of the same problem). Next, what would 

happen if alternatives are informed about the fairness 

adjustments and act adversarially? For that, we must 

design an experiment using the Stackelberg game (Hu 

et al., 2019; Tsirtsis, & Gomez-Rodriguez, 2020). 

Another question that we plan to answer is the 

effect of multicollinearity between criteria on fairness. 

Some approaches mitigate the correlation of criteria in 

the TOPSIS method by using Mahalanobis distance 

(Vega et al., 2014). We plan to extend the proposed 

method with Mahalanobis distance, thus solving two 

problems at the same time. 
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