
Towards an Ontological Model for Modelling and

Automatic Code Generation of Complete Web

Information Systems

Daniel Strmečki, Ivan Magdalenić

Faculty of Organisation and Informatics

Department of Information Systems Development

Pavlinska 2, 42000 Varazdin, Croatia

{daniel.strmecki,ivan.magdalenic}@foi.hr

Abstract. The main goal of the research, which this

early findings are a part of, is to enable systems

development on a higher abstraction level, by applying

code generation from ontological models. In this paper

we present a first step towards defining an ontological

model for modelling and generating complete Web

information systems. The proposed model consists of

several related ontologies and includes both generic

and specific system requirements and functionalities.

The paper includes an experiment (proof of concept),

which shows that code generation from ontological

models is feasible in the Web domain on a common

problem case (table and input forms). Throughout the

paper we present used techniques, models,

technologies and frameworks.

Keywords. Ontology, model, generator, model-driven,

development, programming, automatic, generative.

1 Introduction

Code generation has been an inspiring topic for

researches since the early beginnings of software

engineering discipline. Due to increasing software

complexity and cycles of repeating coding on different

projects, we are trying to increase software reuse by

raising its abstraction level. By encapsulating

knowledge about lower level operations, developers

can think in terms of higher level concepts and thus

become more efficient (Visser, 2008). Although this

topic has been researched for decades, there are no

universal solutions for automatic code generation.

Some of the primary reasons for this are complicated

business processes, high software complexity, number

of parties involved in planning and development,

abilities of the creative people who are performing

development activities, desire for high customisation

by the client, etc. (Musen, 2000; van Ruijven, 2013)

Although we have learned from experience that we

cannot automate everything, we are still trying to

automate as much as we can. For example, Software

Product Lines (SPLs) is a discipline focused on

developing software families (features, variants) using

specifications and code generation.

This paper focuses on code generation based on

ontological models. It is a relatively new approach used

in Generative Programming (GP) and Model-Driven

Development (MDD) disciplines that, we believe,

hasn’t received enough research attention. One could

argue that UML would be better suited for modelling

Web information systems, or that relational databases

could also be used for storing system specifications.

Our literature review showed that ontological model

brings several benefits, including: providing a formal

language that helps bridging the gap between business

and IT, enables requirements specification in an

evolutionary approach, is expressive enough for

specifying system features, is well suited for the

definition and description of Web components, etc.

(Strmečki, Magdalenić, & Kermek, 2016).

The paper presents our early findings on code

generation from ontologies and a first step towards

definition, standardization and reuse of an ontological

model for modelling and generating complete Web

information systems.

2 Background

GP can be defined as a mapping between problem

space (specification) and solution space (executable

code). GP applies a code generator that uses a high

level specification to yield the corresponding

implementation (Magdalenić, Radošević, &

Orehovački, 2013). It relies on metaprogramming

techniques and it is commonly applied in other

disciplines like SPLs and MDD (Strmečki et al., 2016).

SPLs focus on systematically producing a set of

software products consisting of a common architecture

and a set of reusable assets (Asikainen, Männistö, &

Soininen, 2007). Systematic, planned and strategic

reuse of software assets is used to produce multiple

products that satisfy a particular market segment

(Duran-Limon, Garcia-Rios, Castillo-Barrera, &

Capilla, 2015). Its main goal is to avoid developing

software artefacts from scratch, by reconfiguring and

reusing existing products in different projects.

Although each product has some specific requirements,

SPLs use variability mechanisms to develop the

product timely, with low cost and high quality

(Nguyen, Colman, & Han, 2015).

MDD captures the essential features of a system

through models and applies code generators to

automatically produce the executable code from

various modelled entities (Lilis, Savidis, &

Valsamakis, 2014; Magdalenić et al., 2013). In MDD,

models are considered to be reusable artefacts and the

final model needs to be concrete enough for executable

code to be generated from it (Zimmer & Rauschmayer,

2004). The archetypal MDD is based on UML, but

several studies (Bartolo Espiritu, Sanchez Lopez, &

Calva Rosales, 2014; Roser & Bauer, 2006; Solis,

Pacheco, Najera, & Estrada, 2013; Soylu & De

Causmaecker, 2009) have shown that ontological

models can be efficiently used instead.

Ontologies were first introduced to software

engineering trough fields of Artificial Intelligence and

Semantic Web. They were soon recognized as a

convenient way to describe and organize domain and

software engineering knowledge. Nowadays,

ontologies can be applied to aid software development

in every phase of its lifecycle (Wiebe & Chan, 2012).

This includes using ontologies for description of

documents, formal representation of requirements,

semantic description of services and components,

domain modelling, executable code and test cases

generation (Happel & Seedorf, 2006).

2 Related work

Since GP techniques are used in both SPLs and

MDD, we will present some of the related work in

those two areas. Due to paper’s size limit, in this

section we will shortly present only a few papers for

which we think have the greatest impact on the topic.

In their approach named Ontology Driven

Architecture for Software Engineering (ODASE),

Bossche et al. presented the results from applying

ontology-driven architecture on a 250 person per

month e-insurance project. The focus of their research

was on formalizing the requirements in order to

achieve a clear contract between business and IT. They

stated that ontology provides a mechanism for business

to formalize their specifications and for IT to rely on

the formal semantics. The knowledge transfer from

ontology to executable code was done by automatic

code generation based on an internal platform named

Hedwig (Bossche, Ross, MacLarty, Van Nuffelen, &

Pelov, 2007). ODASE showed that application of

ontologies in modelling and generative software

development brings several benefits, but its remains

undisclosed what ontologies were used, how they were

interconnected and mapped to the code generators.

Semantic Web Builder (SWB) is an agile

development platform for the Web domain, which

applies ontologies in requirements modelling and

automatic generation of system’s infrastructure. This

approach generates object-oriented code from a

predefined ontology that is embedded in the platform.

It is a semi-automatic development platform because

the resultant platform needs to be extended in order to

build complex Web systems. This means that specific

functionalities, like business logic and user interface,

need to be developed separately and integrated with the

generated code. SWB approach has been successfully

applied in the development of several government Web

application in Mexico (Solis et al., 2013).

Web Information System auto-construction

Environment (WISE) is a prototype platform for

developing Web information systems. This approach

uses two embedded ontologies (domain and behaviour

ontology) from which it generates executable Java

code. It also provides a graphical tool called WISE

Builder to help its users in constructing the ontologies

(Tang et al., 2006). This feature can be really helpful

for non-professional users, but it also makes it hard to

introduce specific functionalities. Since ontologies,

graphic tool and code generators are tightly coupled,

we would need to extend the platform to add custom

business logic or new user interface elements.

Toti and Rinelli presented a system for semi-

automatic generation of an API framework on top of a

semantic repository. Their system was implemented as

a desktop application written in C# that provides a

number of user-supervised steps for the generation

process. It produces an application logic layer on top

of a RDF schema which enables CRUD (create, read,

update, delete) operations for each class in the RDF

schema. System generates a business entity class, a

DAO class, a facade class and a SOAP-based Web

service interface on top of the facade for every class. In

their approach, specific functionalities are not

modelled trough ontologies and need to be developed

separately (Toti & Rinelli, 2015).

3 Proposal

As we have shown in the short review of related

work, code generation from ontological models is quite

possible, although the details of its implementation are

not always disclosed. Code generation from

ontological models is actually a relatively popular topic

in GP, SPLs and MDD disciplines nowadays. In this

paper we present a proposal for an ontological model

used for modelling and automatic code generation of

complete Web information systems. We believe that it

is possible to model complete systems through

ontologies, which includes both generic and specific

functionalities (like business logic and user interface).

The conceptual model on figure 1 displays multiple

ontologies (and their relations) used in the proposed

ontological model of Web information systems. Our

proposed ontological model consists of several related

ontologies (including requirements, features,

constraints, repository, forms, components and user

interface) which reduces the complexity of the model

and facilitates future upgrades and maintenance. In

addition to serving as a specification for generating

executable code, the instances of the ontological model

can be viewed as a formal representation of system’s

features, constraints and requirements. Connections

between ontological elements ensure that requirements

follow the software product throughout its entire life

cycle.

In a classic Web information systems development

we would probably use ERA model for data

representation and UML for representation of structure

and behaviour. By applying the proposed ontological

model instead, we can ensure preservation and possible

reuse of its elements on future projects. We can achieve

high reusability of the model by mapping its elements

to code generators. Imagine that one already has some

database table, user interface element or Web

component modelled trough the ontological model and

mapped to code generators. Reusing them on a new

project would be as simple as specifying a pointer to

the correct ontological element. The ontological

element already contains all the required specification

and the code generator contains the logic for producing

its implementation. Of course, if one needs to develop

a new component, there are some extra steps to do, like

adding it to the ontological model and updating the

code generators. The process of specifying and

developing Web forms and their components in shown

in figure 2. Even though applying an ontological model

and automatic code generation creates an initial

overhead in development, a high level of ontological

elements reusability can bring improvements and

savings in the long term. This is especially true when

developing families of systems or custom made

software for SMEs, with significant number of

reusable artefacts.

Figure 1. Ontological model – UML component diagram

Figure 2. Process of form (and components) specification and development – UML activity diagram

4 Experiment

Our research on code generation from ontological

models is still in its early stages. In this paper we will

present our early findings in the form of a Proof of

Concept (POC) application. Our POC was

implemented as a Web application written in Java. It

supports CRUD operations on relational database data.

4.1 Ontological model

The ontological model used in the POC shown on

figure 4 is only a partial implementation of the

proposed model. The focus of the POC was to

demonstrate that simple, but complete Web

applications can be generated from a well-defined

ontological model.

The partial implementation of the proposed

ontological model consist of the following ontologies:

repository, forms, components and interface. The

repository ontology describes the relational database

domain and contains table and column definitions. The

forms ontology describes the Web forms to be

generated and organizes them into menu groups. The

components ontology is the most complicated one, as

it describes components a form can contain, as well as

supported actions for clickable components. The

interface ontology connects a specific component to its

rendering rules (for example, the position on the page).

Ontologies were created following Ontology 101

(Noy & McGuinness, 2001) methodology and using

Protégé 4.3.0 with FaCT++ reasoner. The 101

methodology was selected due to its maturity, iterative

nature and a large number of practical guidelines/rules

for making decisions when building ontologies.

Protégé was selected as a tool for creating ontologies

because it is an open-source platform that has been

proven efficient in many similar studies.

4.2 Code generators

We implemented the POC in Java because it a

mature, high level object-oriented programming

language, with good support for code templating and

working with ontologies. Besides that, Java is one of

the most popular programming languages nowadays

and its code is platform independent.

The first problem one encounters when trying to

generate code from an ontological model is how to

access the model data from your code generators.

Fortunately, there is an open source Semantic Web

framework for Java we can use. It’s called Apache

Jena and among other things, it can be used to read

ontological models from files or URLs and query them

using SPARQL. Jena comes with a schema generator

(schemagen.bat) that is used to generate a Java class

file with all the ontological classes and properties

defined within the model. Figure 5 shows an example

of a SPARQL query with Jena, used to fetch all the

button components for a specific Web form.

Now that we know how to read the model and its

instances, we need to map the model to executable code

using code generators. Code generators can be created

with Java and Jena without the need for any additional

frameworks and libraries. We have however decided to

use an additional framework in our POC to help us with

code templating. Apache Velocity is a templating

engine for Java that enables developers to use a simple

templating language to reference objects defined in

Java code. Figure 6 displays an example of how we can

use Velocity to generate getters and setters for each

column in our entity Java class.

We used MySQL 5.7 database and Hibernate

object-relational mapping framework for accessing and

storing data in the database. Since Hibernate enables

high-level object handling of relational tables and

columns, it makes development of code generators

much easier than it would be by writing SQL

statements.

Finally, the last framework we used to accelerate

the development of Web forms for our POC is Vaadin

8. We used Vaadin because it provides us with a large

set of free, out-of-the-box Web components that we

would need to develop ourselves otherwise. It uses a

component-based user interface approach for rapid

building of Java-based Web applications, which is

exactly what we need to facilitate the development of

our code generators.

Having put together all the mentioned technologies

and frameworks, we have successfully mapped the

ontological model to executable code and generated

fully functional Web forms. An example is shown in

figure 3, it is a form that supports CRUD operations for

a database table representing a group of articles.

Figure 3. An example generated Vaadin Web

form

Figure 4. Ontological model used in POC – Protégé OntoGraf

Figure 5. Querying an ontological model using SPARQL – Apache Jena

Figure 6. Templating a database entity class – Apache Velocity

5 Conclusion

In this paper, we have presented the early findings in

our research on code generation from ontological

models. We presented a concept for an ontological

model that can be used to model complete Web

information systems, which includes both generic and

specific functionalities. We reduced the complexity of

the model by dividing it into several related ontologies

(including requirements, features, constraints,

repository, forms, components and user interface). The

main goal of using an ontological model and mapping

it to code generators is to achieve high reusability of

modelled entities (software artefacts). We argue that in

development of SPLs or custom made software for

SMEs, an ontology-based generative programming

approach can bring improvements and savings in the

long term.

We presented an experiment, in a form of a POC,

which showed that it is possible to model and generate

Web forms using the proposed ontology-based

generative approach. Thus, we argue that with more

modelling and development effort, it is also possible to

apply the same approach for developing complete Web

information systems. The POC we presented relies on

technologies and frameworks like Java, Apache Jena,

Apache Velocity, MySQL, Hibernate and Vaadin in

order to facilitate the ontological model to executable

code mapping.

By applying code generation from ontological

models, we are trying to enable development

operations on a higher abstraction level. Ontological

models helps us to move the reasoning and business

logic away from hardcoded applications, which

enables more efficient development and higher

reusability. However, a high level of ontological

knowledge reusability is required for the initial

investments in ontologies and code generators to pay

off. For that very reason, this paper represents a first

step towards specification and standardization of an

ontological model for Web information systems

generative development.

6 Future work

We believe there is much more research and

development to be done in this field. In our future work

we will implement the complete model presented in

this paper. In order to demonstrate the efficiency of this

approach, we plan to carry out several case studies.

Based on experience gained through all of the planned

work with code generation from ontological models,

we plan to define a set of guidelines for ontology-based

generative development. We also plan to introduce a

reasoner for our ontological model, which would help

in the early detection of misspecification in the model.

References

Asikainen, T., Männistö, T., & Soininen, T. (2007).

Kumbang: A domain ontology for modelling

variability in software product families.

Advanced Engineering Informatics, 21(1), 23–

40. http://doi.org/10.1016/j.aei.2006.11.007

Bartolo Espiritu, F., Sanchez Lopez, A., & Calva

Rosales, L. J. (2014). Towards an improvement

of software development process based on

software architecture, model driven architecture

and ontologies. International Conference on

Electronics, Communications and Computers,

118–126.

http://doi.org/10.1109/CONIELECOMP.2014.6

808578

Bossche, M. Vanden, Ross, P., MacLarty, I., Van

Nuffelen, B., & Pelov, N. (2007). Ontology

driven software engineering for real life

applications. Third Int’l Workshop Semantic

Web Enabled Software Eng, 1–5. Retrieved

from

http://citeseerx.ist.psu.edu/viewdoc/download?d

oi=10.1.1.64.9906&rep=rep1&type=pdf

Duran-Limon, H. A., Garcia-Rios, C. A., Castillo-

Barrera, F. E., & Capilla, R. (2015). An

Ontology-Based Product Architecture

Derivation Approach. IEEE Transactions on

Software Engineering, 41(12), 1153–1168.

http://doi.org/10.1109/TSE.2015.2449854

Happel, H., & Seedorf, S. (2006). Applications of

Ontologies in Software Engineering. In 2nd

International Workshop on Semantic Web

Enabled Software Engineering (SWESE 2006),

1–14. http://doi.org/10.1.1.89.5733

Lilis, Y., Savidis, A., & Valsamakis, Y. (2014).

Staged model-driven generators: Shifting

responsibility for code emission to embedded

metaprograms. MODELSWARD 2014 -

Proceedings of the 2nd International

Conference on Model-Driven Engineering and

Software Development, 509–521. Retrieved

from

http://www.scopus.com/inward/record.url?eid=

2-s2.0-84906895434&partnerID=tZOtx3y1

Magdalenić, I., Radošević, D., & Orehovački, T.

(2013). Autogenerator: Generation and

execution of programming code on demand.

Expert Systems with Applications, 40(8), 2845–

2857. http://doi.org/10.1016/j.eswa.2012.12.003

Musen, M. A. (2000). Ontology-oriented design and

programming. Knowledge Engineering and

Agent Technology, 3–16. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?d

oi=10.1.1.18.6062&rep=rep1&type=p

df

Nguyen, T., Colman, A., & Han, J. (2015). A Feature-

Based Framework for Developing and

Provisioning Customizable Web Services. IEEE

Transactions on Services Computing, 1374(c),

1–1. http://doi.org/10.1109/TSC.2015.2405546

Noy, N., & McGuinness, D. (2001). Ontology

Development 101 : A Guide to Creating Your

First Ontology. Knowledge Systems Laboratory.

Roser, S., & Bauer, B. (2006). Ontology-Based Model

Transformation. Satellite Events at the MoDELS

2005 Conference, 355–356.

http://doi.org/10.1007/11663430_42

Solis, J., Pacheco, H., Najera, K., & Estrada, H.

(2013). A MDE Framework for semi-automatic

development of web applications.

MODELSWARD 2013 - Proceedings of the 1st

International Conference on Model-Driven

Engineering and Software Development, 241–

246. http://doi.org/10.5220/0004321302410246

Soylu, A., & De Causmaecker, P. (2009). Merging

model driven and ontology driven system

development approaches pervasive computing

perspective. 2009 24th International Symposium

on Computer and Information Sciences, 730–

735.

http://doi.org/10.1109/ISCIS.2009.5291915

Strmečki, D., Magdalenić, I., & Kermek, D. (2016).

An Overview on the use of Ontologies in

Software Engineering. Journal of Computer

Science.

http://doi.org/10.3844/jcssp.2016.597.610

Tang, L., Li, H., Qiu, B., Li, M., Wang, J., Wang, L.,

… Tang, S. (2006). WISE: A Prototype for

Ontology Driven Development of Web

Information Systems. In Lecture Notes in

Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics) (Vol. 3841 LNCS, pp.

1163–1167).

http://doi.org/10.1007/11610113_126

Toti, D., & Rinelli, M. (2015). Semi-automatic

Generation of an Object-Oriented API

Framework over Semantic Repositories. In

2015 International Conference on Intelligent

Networking and Collaborative Systems (pp.

446–449). IEEE.

http://doi.org/10.1109/INCoS.2015.22

van Ruijven, L. C. (2013). Ontology for Systems

Engineering. Procedia Computer Science, 16,

383–392.

http://doi.org/10.1016/j.procs.2013.01.040

Visser, E. (2008). WebDSL: A Case Study in

Domain-Specific Language Engineering.

Generative and Transformational Techniques in

Software Engineering II, 5235, 291–373.

http://doi.org/10.1007/978-3-540-88643-3_7

Wiebe, A. J., & Chan, C. W. (2012). Ontology driven

software engineering. In 2012 25th IEEE

Canadian Conference on Electrical and

Computer Engineering (CCECE) (pp. 1–4).

IEEE.

http://doi.org/10.1109/CCECE.2012.6334938

Zimmer, C., & Rauschmayer, A. (2004). Tuna :

Ontology-Based Source Code Navigation and

Annotation. Workshop on Ontologies as

Software Engineering Artifacts, 1–9.

