

Method of Software Obfuscation Using Petri Nets

Dmitriy Dunaev, László Lengyel

Faculty of Electrical Engineering and Informatics

Department of Automation and Applied Informatics

Budapest University of Technology and Economics

Magyar tudósok krt. 2, 1117, Budapest, Hungary

{dunaev, lengyel}@aut.bme.hu

Abstract. Obfuscation, in general, is a technique that

is used to intentionally make a program code harder

to read and analyze for privacy or security purposes.

To counteract reverse engineering and unauthorized

program analysis, we have to consider obfuscation of

a control flow graph since it describes all possible

paths a program flow could take through a routine.

 This paper presents a control flow graph obfuscation

method using multithreaded environment modelled

with Perti nets. The focus is set on splitting a routine

code to sections that are to be executed separately in

different threads. We introduce a Petri net manager

which is responsible for threads management, and

describe the execution process of an obfuscated

routine.

Keywords. Obfuscation, Petri nets, control flow

graph.

1 Introduction

In the general approach, code obfuscation is a set

of program transformations that make program code

and/or program execution difficult to analyze [1].

Obfuscation hinders manual inspection of program

internals and as a result protects against reverse

engineering. It protects both storage and usage of

keys, and it can hide certain properties such as a

software fingerprint or a watermark, or even the

location of a bug in case of an obfuscated patch.

However, code obfuscation itself does not protect

from code lifting or software piracy. It merely

strengthens built-in protection mechanisms, e.g.

against tampering or piracy [2].

The process of obfuscation can be defined and

therefore approached in different ways. We consider

obfuscation as a one-way process of original code

transformation that results in adding some excessive

functionality with the purpose of protecting software

from unauthorized analysis and reverse engineering.

This process is one-way, what means that there is no

effective way to subsequently return to the original

state [3].

Definition.
Let TR be a transformation process PR1 => TR =>

PR2, by which the PR2 program is obtained from PR1.

We say that the process TR is obfuscating process if

the following requirements are met:

1) Program PR2, being obtained from PR1, is

significantly different from PR1. However, it

is runnable and has the same functionality as

PR1, so that Barack’s functionality

requirement holds true [4].

2) The program analysis, study of operation

principles and reverse engineering of PR2 is

significantly more difficult and time

consuming than in case of PR1.

3) At any transformation of PR1, the resulting

PR2 instance will be different.

4) There is no effective way to transform PR2

back to the original PR1.

Since the resulting code obtained after entangling

transformations is always different, the obfuscating

techniques can be used for prompt identification of

copyright infringers, i.e. the buyers of legal software

that are engaged in illegal distribution of purchased

software copies. To utilize this idea, it is enough to

calculate the checksum of every obfuscated program

copy, and register it together with customer data in

the relevant storage (database). Hereinafter, in case of

illegal software distribution, it is enough to calculate

the checksum of one illegal copy and compare it with

information in a storage in order to identify the

copyright infringer.

If we consider a software application, it can be

represented at three levels (Figure 1):

- source code,

- some intermediate representation,

- machine code.

Source code obfuscation means taking the

application source code and obscuring it, so prying

eyes cannot view it in its native format. Actually,

source code level obfuscation is less secure than

intermediate or executable level techniques. This is

primarily because code obfuscators cannot take

advantage of implementation details that are not

permitted by language compilers. Thus, such

Central European Conference on Information and Intelligent Systems__Page 242 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

obfuscators are restricted by the given programming

language and by the given compiler. In addition,

software protection models on source code level

would not withstand attacks that combine static and

dynamic analysis techniques [5].

Figure 1. Possible levels of obfuscation

An advantage with intermediate level obfuscation

is that it deals with a target platform independent

intermediate code. In case such intermediate level

obfuscator needs to be ported to another platform, one

only needs to write a new translator for the specified

processor. Intermediate code is usually a description

of high-level statements with some simpler

instructions that accurately represent the operations of

the source code statements. An intermediate level

obfuscation algorithm is described in [6].

In this paper, we introduce a method combining

different aforementioned approaches. To counteract

reverse engineering and unauthorized program

analysis, we have to consider entangling the control-

flow graph (CFG), which is a graph of the different

possible paths program flow could take through a

routine. To do this we propose a method based on

Petri nets.

The rest of this paper is organized as follows. In

Section 2, we introduce the formal definitions of a

control flow graph and a Petri net graph. With the

help of an example, we show how Petri net graph can

be used for obfuscation modeling. We handle the

problem of switching threads and context

management by introducing a Petri net manager.

Finally, in Section 3 we draw the conclusions, point

out problems and outline the further work.

2 Contribution

A control flow graph is a data structure usually

built on top of the intermediate code representation

abstracting the control flow behavior of a routine. The

CFG is a directed graph where the vertices represent

basic blocks and edges represent possible transfer of

control flow from one basic block to another.

The formal definition of CFG is the following.

Definition.

G=(V, E, start, stop) is a control flow graph ⇔

1) (V, E) – directed graph

2) start ∈ G.V, stop ∈ G.V

3) |in(start)| = |out(stop)| = ∅

4) ∀v ∈ G.V start→*v→*stop

The main problem of CFG is that it is essential to

many static analysis tools. For example, analysis and

optimization tools usually use such graph property as

reachability. If a block/subgraph is not connected

from the subgraph containing the entry block, that

block is unreachable during any execution, and so is

the unreachable code; that is, it can be safely removed

(such code is called dead). If the exit block is

unreachable from the entry block, it indicates an

infinite loop (not all infinite loops are detectable, of

course). However, dead code and some infinite loops

are possible even if the programmer did not explicitly

code that way: optimizations like constant

propagation and constant folding followed by jump

threading could collapse multiple basic blocks into

one, and by that cause edges to be removed from a

CFG.

Therefore, we can conclude that a CFG should be

properly entangled in order to counteract reverse

engineering attempts.

Perti net is a directed, bipartite graph in which

nodes are either “places” (represented by circles) or

“transitions” (represented by horizontal lines or

rectangles), invented by Carl Adam Petri [7, 8]. Petri

Nets provide an elegant and mathematically rigorous

modelling framework for dynamic and discrete event

systems. A Petri net is marked by placing “tokens” on

places. When all the places with arcs to a transition

(its input places) have a token, the transition “fires”,

removing a token from each input place and adding a

token to each place pointed to by the transition (its

output places).

Petri nets are widely used to model concurrent

systems and network protocols [9, 10]. We will use

them to obfuscate a CFG of a routine.

Definition.

A Petri net graph is a 3-tuple (S, T, W), where:

1) S is a finite set of places

2) T is a finite set of transitions

3) S and T are disjoint, i.e. no object can be both

a place and a transition

4) W: (S×T)⋃(T×S)→N is a multiset of arcs, i.e.

it assigns to each arc a non-negative integer

arc multiplicity.

In the presented method, a code of a routine is

divided into code sections that will be executed

separately in different threads. Each section is

executed when the appropriate Petri net transition

fires.

Source code

Machine code

Intermediate
representation

Central European Conference on Information and Intelligent Systems__Page 243 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

Figure 2. An example of Petri net used for CFG

obfuscation
1

Figure 2 shows an example of a Petri net that can

be used for protecting routines from analysis and

reverse engineering [11]. The illustrated net contains

transitions t1…t7 and places p1…p7. The transition t7

fires in a single case – when places p4 and p6 contain

two tokens both. The places p4 and p6 can obtain two

tokens at one of two possible sequences of transitions:

2626431 ttttttt  (1)

2626341 ttttttt  (2)

In all other sequences, the transition t7 will not fire.

We propose that t1…t7 represent some sections of

a routine code, and the sequence of execution of these

sections of code is important. We further propose that

places p1…p7 correspond to certain sets of input data.

Here we assume that the code sections are executed in

separate threads, and the execution sequence is

managed by synchronization mechanisms of an

operating system. Suppose we know the maximum

execution time of each code section; let us denote it

by T
i
max. We assume that if execution time of i-th code

section exceeds T
i
max, the sequence of transitions

firing changes and consequently t7 will not fire. Thus,

putting a breakpoint in one of the above code sections

will change the sequence of transitions and, therefore,

reverse engineering of such routine becomes a non-

trivial task.

It should be emphasized that for runnability of

obfuscated routine, we need to make sure that the

context that working threads are dealing with does not

change while switching threads. By context we

understand the following: register values, stack

1
 The figure is made by PIPE2 – an open-source platform-

independent tool for creating and analyzing Petri nets. The
project webpage: http://pipe2.sourceforge.net/

variables, values of flag registers, and values in global

memory segments. Consequently, switching between

threads must be completely transparent, and must not

introduce any changes to the context. Prologue code

and similar epilogue code is needed just for this

purpose. Prologue code restores the context that has

been saved by epilogue code of the previous code

section (Figure 3). Petri net manager by-turn is

responsible for controlling and activating threads.

Figure 3. A structure chart of an obfuscated routine

using Petri net.

Thus, the execution of obfuscated CFG with Petri

nets may look as described below.

1) Petri net manager receives control over the

routine execution.

2) Petri net manager carries out initialization

phase:

- saves initial context,

- marks the net by setting up initial values to

places (each place can contain a fixed

number of tokens),

- starts as many threads as the number of

available transitions

- suspends all started threads.

3) Petri net manager “starts” transitions, which

contain WaitForMultipleObjects function call.

Preceding timing functions will determine

which of the transitions should fire first. Once

the transition fires, all other transitions are

“blocked”, i.e. cannot fire until the next Petri

net manager call.

4) As a next step, the control is transferred to a

secure container of corresponding transition

(Figure 3), namely the corresponding thread is

activated from suspended state.

5) The activated thread restores the context,

executes the working code, saves the context

and transfers the control back to Petri net

manager.

6) Petri net manager moves the tokens and

restarts transitions.

7) The process is repeated until the transition

containing the last piece of code is fired. For

Central European Conference on Information and Intelligent Systems__Page 244 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

Petri net in Figure 2 this would be the

transition t7. We call it “the last transition”.

8) When the last transition is fired and the

corresponding thread finishes execution, Petri

net manager frees any allocated resources and

control is transferred to the subsequent code.

It should be particularly noted that the presented

method can be applied not only to the complete

software application, but also to some critical code

sections or subroutines. Even if there is no possibility

to obfuscate the complete program, it can be done

with respect to lower-level subroutines.

3 Conclusions and Future Work

It has been proved by Boaz Barack in his works

[4,12] that universal obfuscator does not exist, since

there exists a class of programs for which the virtual

black box property is not feasible. However, if the

obfuscated program does not belong to the Barack's

class of non-obfuscateable programs, then the reverse

engineering would not be trivial, because the

entangled operational logic can be implemented with

still high level of complexity.

In the paper, we have presented a method of

obfuscation based on Petri nets. The method can be

used to protect software from unauthorized analysis

and modification, and consequently to prevent its

reverse engineering. We have described the step-by-

step execution process of obfuscated code, showing

that this technique can be used as a part of a software

protection utility. The main disadvantage of this

method is its platform- and system-dependence.

The implementation of the above-described

approach presents problems that still need to be

solved, such as:

- timings;

- synchronization of threads;

- considerable execution slowdown.

Consequently, another issue to be solved is a

possibility of violating timings in real-time sensitive

applications, or in some cases introducing problems

with concurrent accesses to local variables or I/O

subsystem.

The presented method is system-dependent in its

implementation, and therefore cannot be named

universal. However, we find the presented idea

promising, since involving Petri nets into obfuscation

can significantly complicate the reverse engineering

of protected code.

Future work includes, but is not limited to, solving

the aforementioned problems with timings and

synchronization and working out in details methods of

interaction between Petri net manager and program

threads.

4 Acknowledgments

This work was partially supported by the European

Union and the European Social Fund through project

FuturICT.hu (grant no.: TAMOP-4.2.2.C-

11/1/KONV-2012-0013) organized by VIKING Zrt.

Balatonfüred.

References

[1] Collberg, C.S.; Thomborson, C. Watermarking,

tamper-proofing, and obfuscation - tools for

software protection. In IEEE Transactions on

Software Engineering, vol. 28, pp. 735–746,

August 2002.

[2] Sorokina, S.I.; Tihonov, A.Ju.; Scherbakov, A.Ju.

Programming of drivers and secure systems.

BHV-Petersburg Press, ISBN 5-94157-263-8, St.

Petersburg, Russia, 2003. In Russian.

[3] Dunaev, D. Obfuscation for protecting software

from analysis and modification. In Proceedings

of the Automation and Applied Computer Science

Workshop 2011 (AACS'11), pages 290-296,

Budapest, Hungary, June, 2011.

[4] Barak, B.; Goldreich, O.; Impagliazzo, R.;

Rudich, S.; Sahai, A.; Vadhan, S.; Yang, K. On

the (im)possibility of obfuscating programs. In

Proceedings of the 21
st
 Annual International

Cryptology Conference, Santa Barbara,

California, USA. LNCS, Vol. 2139, 2001.

[5] Madou M.; Anckaert, B.; De Sutter, B.; De

Bosschere, K. Hybrid static-dynamic attacks

against software protection mechanisms. In

Proceedings of the 5
th

 ACM workshop on Digital

rights management, pages 75-82. ACM, 2005.

[6] Dunaev D.; Lengyel L. Overview of an

Obfuscation Algorithm. In Proceedings of the

International Conference on Computer Science

and Information Technologies (CSIT'2012),

pages 36-38, Lvov, Ukraine, November, 2012.

[7] Petri, C.A., Kommunikation mit Automaten.

Bonn: Institut für Instrumentelle Mathematik,

Schriften des IIM Nr. 2, 1962. In German.

[8] Petri, C.A. Fundamentals of a theory of

asynchronous information flow. In Proceedings

of IFIP Congress 62, pages 386-390, Amsterdam,

North Holland Publ. Comp., 1963.

[9] Lakos Ch.; Lamp J.; Keen Ch.; Marriott B.

Modelling network protocols with object Petri

nets. In Proceedings of Workshop on Petri Nets

Central European Conference on Information and Intelligent Systems__Page 245 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

Applied to Protocols, pages 31-42, Springer-

Verlag, 1995.

[10] Jensen, K.; Kristensen, L.M.; Wells L. Coloured

petri nets and CPN tools for modelling and

validation of concurrent systems. Int. J. Softw.

Tools Technol. Transf. 9, 3, pages 213-254, 2007.

[11] Dingle, N.J.; Knottenbelt, W.J.; Suto, T., PIPE2:

a tool for the performance evaluation of

generalized stochastic Petri Nets. SIGMETRICS

Perform. Eval. Rev. 36, 4 (March 2009), pages

34-39.

[12] Barak, B. Non-black-box techniques in

cryptography. PhD thesis, Department of

Computer Science and Applied Mathematics,

Weizmann Institute of Science, January 6, 2004.

Central European Conference on Information and Intelligent Systems__Page 246 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

