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Abstract. The development of mathematics stands as
one of the most important achievements of humanity,
and the development of the calculus, both the differen-
tial calculus and integral calculus is one of the most
important achievements in mathematics. Differential
calculus is about finding the slope of a tangent to the
graph of a function, or equivalently, differential calcu-
lus is about finding the rate of change of one quantity
with respect to another quantity. On the other hand, in-
tegration is an important concept in mathematics and,
together with its inverse, differentiation, is one of the
two main operations in calculus. Integrals and deriva-
tives became the basic tools of calculus, with numerous
applications in science and engineering. Category
theory is a mathematical approach to the study of
alge-braic structure that has become an important
tool in theoretical computing science, particularly for
semantics-based research. The notion of a limit in
category theory generalizes various types of universal
constructions that occur in diverse areas of mathe-
matics. In our paper we show how to represent some
parts of infinitesimal calculus in categorical structures.
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1 Introduction
The science and technology are nowadays the unthink-
able parts of global world. Their expansion simplify
the work in many branches and of course the daily life
[7]. In day to day life we are often interested in the ex-
tent to which a change in one quantity affects a change
in another related quantity. This is called a rate of
change. Differential calculus, a part of mathematics, is
about describing in a precise fashion the ways in which
related quantities change. Differential and integral cal-
culus are dual fields and they together form a base for
infinitesimal calculus [4, 5, 6, 9, 12, 15]. Infinitesimal
calculus is a part of mathematics concerned with find-
ing slope of curves, areas under curves, minima and
maxima, and other geometric and analytic problems.

On the other hand, category theory is an area of
study in mathematics that examines in abstract way

the properties of particular mathematical concepts by
formalizing them as collections of objects and arrows
(called morphisms, although this term also has a spe-
cific, non category-theoretical meaning), where these
col-lections satisfy some basic conditions [2, 3]. Cate-
gory theory is a branch of mathematics that has been
developed over the last fifty years, and it has con-
cerned with the study of algebraic structures [11]. Cat-
egory theory, a branch of abstract algebra, has found
many applications in mathematics, logic, and computer
science. Like such fields as elementary logic and set
theory, category theory provides a basic conceptual ap-
paratus and a collection of formal methods useful for
addressing certain kinds of commonly occurring for-
mal and informal problems, particularly those involv-
ing structural and functional considerations.

Nowadays, many significant areas of mathematics
and informatics can be formalized as categories, and
the use of category theory allows many intricate and
subtle mathematical results in these fields to be stated,
and proved, in a much simpler way than without the
use of categories. Functions are mostly represented by
morphisms from a domain into a codomain of a func-
tion, and we can consider them as the structures enclos-
able into category [13].

In our paper we show the rôle of categorical struc-
tures in infinitesimal calculus - we construct a diagram
of functions and we show how to find a categorical
limit of that diagram. In the second part of the arti-
cle we show how to express derivatives in the another
way in categories.

2 Motivation
Nowadays, there are always some software products
that are less reliable than their more traditional engi-
neering counterparts. Part of the reason is that, be-
ing digital, they are readily reused in unexpected sit-
uations, a problem seldom experienced by "physical"
products. Even if software works correctly in one
context it may fail arbitrarily when reused in another.
There exists approach where differential equations are
used to specify behavior and the calculus used to anal-
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yse and simulate it. As a result, engineering products
can be accounted for even before they are commis-
sioned. The aim is then accountably correct informa-
tion systems. Formal specifications form the first im-
portant technique; by capturing precisely the functional
behaviour of a system they promote its accurate reuse
in differing contexts. Formal descriptions at varying
levels of abstraction are the equivalent of approxima-
tion in the calculus, and they enable a realistically com-
plex system to be understood or developed incremen-
tally top-down. Then criteria for conformance of de-
scriptions at differing levels of abstraction underpin the
correctness of that enterprise. Technical contributions
produce laws that can be automated and readily used
by the system designer to validate designs, and seman-
tic models to establish the soundness of those laws.

The programme’s methodology incorporates the in-
separability of theory and realistic application: the-
ory is needed to address pressing problems; applica-
tion is required to validate the theory. It endorses an
indivisible relationship between research, development
and knowledge-transfer/pedagogy. Projects where this
methodology is particularly important include the fol-
lowing:

- Web Services;

- Mobile Phone as a Platform for Development Ap-
plications;

- Distributed Systems;

- Model-Driven Development of Component-
Based Software;

- Emergence;

- Probabilistic Behaviour;

- Software Engineering in Health Care;

Numbers of software applications, such as those in
healthcare, governance and financial industry, are be-
coming increasingly komplex nowadays, due to the
rapid increase in the power of hardware systems and
advances in communication network technologies. The
failure of such software would be expensive and in-
convenient - even chaotic - but it could also, in an in-
creasing number of cases, impinge on public safety.
There are many cases where the importance of the re-
search on software engineering foundations and soft-
ware development methodologies, as well as their ap-
plications in sharded, interoperable and trustworthy in-
formation systems have been recognized. Some meth-
ods, for instance such of model-driven development
which studies how models of large software systems
are divided into smaller models across competing de-
sign concerns, and how models are refined through dif-
ferent levels of abstraction, are actual nowadays. Tech-
niques and tool support for model construction, de-
composition/composition, validation and transforma-
tions have been developed. The techniques and their

tool support are developed based on a unified theory of
program semantics that allows them to be applied con-
sistently in different phases of a model-driven develop-
ment process. The semantic method needed forthat ap-
proach can be chosen from the most usual used like ac-
tion semantics, denotational or operational semantics,
also categorical semantics which is a new approach in
some ways. The rigor and techniques of abstraction
are effective for mastering the complexity of the pro-
cess, and critical to assuring the trustworthiness of the
system developed.

Depends on whether we want to really understand
the application area, or just write code based on spec-
ifications given to programmer by another engineer.
Many communication systems and control systems, for
example, are based on engineering topics which rely
heavily on integral and differential calculus.

Since computers work with fixed-precision numbers
(integers or floating-point), the math-book-style calcu-
lus of continuous functions has to be translated into
forms that are computable using discrete functions. For
example, in digital signal processing you often see a
discrete convolution (used in filtering, etc.) which is
more or less the same operation as a convolution, only
replacing the integrals with summations. On the other
hand, typical computer work like database design, op-
erating systems, web-based applications, point-of-sale
terminals, etc. - these type of algebraic/logical systems
would rarely use integral or differential calculus. Only
in the case when the knowledge of probability and stat-
ics is required and they are useful in several areas of
computer science.

Finally, there are other types of "calculus" than just
integral and differential, for example the lambda calcu-
lus of Alonzo Church which is fundamental to topics
in computability.

Several software fields use the calculus directly: ma-
chine learning, software for science and engineering,
physics engines in computer games. Fields that use nu-
merical methods generally prefer or require some un-
derstanding of calculus and linear algebra. These in-
clude:

- computer graphics, including computer games;

- anything that uses statistics;

- engineering and science;

- quantitative finance.

We can say that there are a fairly substantial minority
of high-quality technical programming positions. But
often it is necessary to know about limits and deriva-
tives to understand what Big-O notation means, and
why for example an exponential algorithm will take
forever, while a quadratic algorithm might be feasible.

Based on all these knowledge it is convenient and
also necessary to formulate differential calculus by
means of categorical structures because the category
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theory offers a unique toolkit to formulate many as-
pects of the some areas and it allows us to develop fur-
ther at an appropriate and useful level of abstraction
and generality [14].

In the next sections we define the basic notions
from category theory needed for our approach and we
express the modeling of some parts of the differen-
tial calculus in categories. We enclose functions and
their derivatives into special category where objects are
functions, the so called arrow category. For defining
the relations between functions and their derivatives we
define a codomain functor.

3 Basic Notions

In mathematics, and especially in category theory, a
commutative diagram is a diagram of objects and mor-
phisms such that all directed paths in the diagram with
the same start and endpoints lead to the same result
by composition. Commutative diagrams play the cru-
cial rôle in category theory that equations play in al-
gebra [3]. A general form of commutative diagram is
depicted in Fig. 1.

Figure 1: Commutative diagram

Diagram in Fig. 1 expresses the following equality:

fn ◦ fn−1 ◦ . . . ◦ f2 ◦ f1 = gm ◦ gm−1 ◦ . . . ◦ g2 ◦ g1

for m,n ∈ N.

A category C is mathematical structure consisting of
objects, e.g. A,B, . . . and morphisms of the form

f : A→ B

between them. Every object has the identity morphism
idA : A → A and morphisms are composable. Be-
cause the objects of category can be arbitrary struc-
tures, categories are useful in computer science [3, 13],
where we often use more complex structures not ex-
pressible by sets. These data are required to satisfy the
following laws:

- Associativity:

h ◦ (g ◦ f) = (h ◦ g) ◦ f

for all morphisms f : A → B, g : B → C and
h : C → D.

- Unit:
f ◦ idA = idB ◦ f = f

for all f : A→ B such that the diagram at Fig. 2
commutes.

A
idA - A

B

f

?

idB
-

f ◦
id
A -

B

id
B ◦

f

-

Figure 2: Diagram of unit in category

In our approach we construct special type of cate-
gory which is called arrow category or comma cate-
gory. We denote it C→. It is defined over a base cate-
gory C and it holds, that its objects are the morphisms
of C , and its morphisms are commuting squares (dia-
grams) in C [1].

Homomorphisms between categories are called
functors, e.g. a functor

F : C → D

from a category C into a category D (or between cat-
egories) considered as a structure-preserving mapping
between categories as follows:

1. F (f : A→ B) = F (f) : F (A)→ F (B);

2. F (idA) = idF (A);

3. F (g ◦ f) = F (g) ◦ F (f).

That is, F preserves domains and codomains, identity
arrows, and compostion.

Codomain functor is the special functor defined for
arrow category. Codomain functor is always defined
for the arrow category and the appropriate base cate-
gory [8]. It is defined as follows:

F : C→ → C

which assigns to each object from arrow category its
codomain and to each morphism from arrow category
the morphism between appropriate codomains.
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4 Categorical Structures in Differ-
ential Calculus

The practical applications of differential calculus are
very widely ranging. Suffice to say that differential
calculus is an indispensable tool in every branch of sci-
ence and engineering. In elementary mathematics there
are two main applications of differential calculus. One
is to help in sketching curves, and the other is in opti-
misation problems [15].

We could also say that differential calculus is a pro-
cedure for finding the exact derivative directly from the
formula of a function, without having to use graphical
methods. In practise we use a few rules that tell us how
to find the derivative of almost any function that we are
likely to encounter.

The derivative of a function at a chosen input value
describes the best linear approximation of the function
near that input value. Informally, the derivative is the
ratio of the infinitesimal change of the output over the
infinitesimal change of the input producing that out-
put. For a real-valued function of a single real vari-
able, the derivative at a point equals the slope of the
tangent line to the graph of the function at that point.
The process of finding a derivative is called differenti-
ation. The reverse process is called antidifferentiation.
The fundamental theorem of calculus states that antid-
ifferentiation is the same as integration. Differentiation
and integration constitute two fundamental operations
in single-variable calculus.

4.1 Derivatives in category

For defining the derivatives in category we consider the
arrow category Der→ over the category of sets. The ar-
row category, also called a comma category is defined
for each category [8]. Any arrow category C→ over
the base category C has as objects all morphisms from
the base category. Then morphisms of arrow category
are morphisms defined as tuples between domains and
codomains of objects.

Because the derivative f ′ to function f is also func-
tion, we can construct the base category as category
of sets Der, where objects are sets (the domains and
codomains of functions) and morphisms are functions.
The arrow category Der→ over a base category of sets
exist according to the definition, so we can define any
function as object in arrow category. Morphisms of
Der→ are the operations of differentiation which as-
sign to any function f its derivative f ′ according to the
definition.

The category Der→ is defined as follows:

1. objects are functions f, g, h, . . . and their deriva-
tives f, f ′, . . . The functions are arrows in the base
category Der;

2. morphisms are tuples (D,C) of mappings be-

tween domains and codomains of objects:

(D,C) : f → f ′,

is a differentiation operation which assigns to
function f its derivative f ′, where D is a mapping
between domains and C between codomains. The
tuple (D,C) we denote as morphism der.

3. for any object f there is defined an identity mor-
phism which sends any object to itself:

idf : f → f.

4. composition of morphisms is defined as follows:
for two morphisms der1 : f → f ′ and der2 :
f ′ → f ′′ , their composition der2◦der1 : f → f ′′

is a new morphism that assigns to function f its
the second derivative, because the first derivative
of f ′ is defined as follows,

(f ′) = f ′′.

5. composition of morphisms is associative opera-
tion defined as follows:

(der3 ◦ der2) ◦ der1 = der3 ◦ (der2 ◦ der1) .

The codomain functor Cod : Der→ → Der always
exists. It assigns to any object f in Der→ its codomain
cod(f) in Der, and to any morphism der : f → f ′ in
Der→ the arrow between codomains of der in Der (3).

f

f ′

f ′

f

Der

Der→

der

Cod

Figure 3: The codomain functor between categories

4.2 Example of expressing the derivatives
in category

Let’s take the function of natural logarithm as an ex-
ample. This function has the following specification:

f : (0;∞)→ R.

The logarithmic function is a morphism with the do-
main of positive real numbers and the codomain is the
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set of all real numbers. When finding the derivative of
function, we use rules for derivation. For logarithmic
function its derivative is as follows:

f ′(x) = (lnx)
′
=

1

x
,

which is well-known basic reciprocal linear rational
function, simply called reciprocal function. This func-
tion is defined on the set of non-zero reals, and it sends
every real number to its reciprocal value, i.e. its mul-
tiplication inverse. The reciprocal function f ′(x) = 1

x
has the specification

f ′ : R\ {0} → R\ {0} ,

where both sets - the domain and the codomain are
identical, namely the set of nonzero real numbers. The
second derivative of f(x) = lnx is the first derivative
of the reciprocal function f ′(x) = 1

x and it is the func-
tion

f ′′(x) = − 1

x2
,

which has the specification

f ′′ : R\ {0} → (−∞; 0).

All functions listed above are depicted in the Fig. 4.

Figure 4: Natural logarithm function and its the first
and the second derivative

It holds that the second derivative of function lnx is a
function f ′′(x) = − 1

x2 which is the first derivative of
the reciprocal function f ′(x) = 1

x ,

f ′′(x) = (f ′(x))
′
.

In the category Der, the functions f, f ′ and f ′′ are
the following morphisms in category:

f : (0;∞)→ R
f ′ : R\ {0} → R\ {0}
f ′′ : R\ {0} → (−∞; 0)

with their domains and codomains

dom(f) = (0;∞) cod(f) = R
dom(f ′) = R\ {0} cod(f) = R\ {0}
dom(f ′′) = R\ {0} cod(f ′′) = (−∞; 0)

and the sets (0;∞), R, R\ {0} and (−∞; 0) are ob-
jects in this category. For any object A the identity
morphism is defined as follows:

idA : A→ A,

and morphisms are composable according to the obvi-
ous rules for composition of functions.

In category Der→ the functions f, f ′ and f ′′ are ob-
jects in this category. The morphisms between objects
are differentations, denoted der:

der : f → f ′,

and they are defined as tuples of two arrows for map-
ping of domains and codomains of objects, der =
(D,C), where

D : dom(f)→ dom(f ′), C : cod(f)→ cod(f ′).

The identity is defined for each object,

idf : f → f,

is the zero derivation which is an identity mapping: it
sends any function to itself. The composition of func-
tions represents the gradual increasing of order of dif-
ferentiation. Here, for the functions f ′(x) = 1

x and
f ′′(x) = − 1

x2 , the differentiations are:

- der1 : f → f ′ for the first derivative of f ;

- der2 : f ′ → f ′′ for the first derivative of f ′.

By composition of der1 and der2 we obtain a new mor-
phism der2 ◦ der1 (which we can also denote der12):

der2 ◦ der1 : f → f ′′,

and it is the second derivative of f :

f ′′(x) = (lnx)
′′
= − 1

x2
.

For the composition it holds the following commuta-
tive diagram (Fig. 5).

From the diagram at Fig. 5 the following equality
holds:

C2 ◦ C1 ◦ f = f ′′ ◦D2 ◦D1.

The relation between categories Der and Der→ is ex-
pressed by the codomain functor

Cod : Der→ → Der.

This functor assigns to every object in Der→ its
codomain - a set in Der:

Cod(f) = B
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(0;∞)
D1- R\ {0} D2- R\ {0}

R

f

?

C1

- R\ {0}

f ′

?

C2

- (−∞; 0)

f ′′

?

Figure 5: Diagram of the second derivative

for any morphism f : A → B, and any morphism in
Der→ it sends to a morphism between the appropriate
codomains:

Cod(der) = C

for any der : f → f ′, where morphism C is

C : cod(f)→ cod(f ′).

5 Conclusion
In this paper we have showed our approach for deriva-
tives. The aim of our paper was an illustration of us-
ability of categories in various fields of mathematics.
Our next goal is to investigate how to implement math-
ematical expressions of some parts of infinitesimal cal-
culus in practical approach [10].
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