

Dependencies of File System Cluster Size in Correlation

with Database Management System

Tin Kramberger, Davor Cafuta, Ivica Dodig

Polytechnic of Zagreb

Department of informatics and computing

Vrbik 8, 10000 Zagreb, Croatia

{tin.kramberger, davor.cafuta, ivica.dodig}@tvz.hr

Abstract. Databases represent core in many software

solutions. Features required by software applications

for database management systems include fast

response, reliability and fault tolerance. It could be

suspected that the file system as primary layer of a

database management system can affect database

management system performance on every computer

system, especially on computer systems with an

inferior hardware. Database performance does not

depend primarily on the type of file system, but also

on preferences like cluster size, implemented cache

strategy and applied fault tolerance. It can be

assumed that these dependences are proportional on

different types of file systems. Several measurements

are presented showing correlation of the cluster size

on database performance in different file system type

surroundings using PostgreSQL. With results

obtained by measurements, one should be able to

determine which of the measured file systems in

correlation with cluster size should be implemented in

simple computing solutions like embedded systems

due to their inferior computing power.

Keywords. Database, File system, performance,

cluster size

1 Introduction

File system is a mechanism which describes how

files are named and where they are placed logically

for storage and retrieval. The DOS, Windows, OS/2,

Macintosh, and UNIX-based operating systems all

have file systems in which files are placed somewhere

in a hierarchical tree structure. A file is placed in a

directory or subdirectory at the desired place in the

tree structure. The file system enables organization of

the data and some features of the operating system

like fast search, security of the files and other.

In a computer system information is considered as

the most valued data. The data placement is often

done as a last phase in every process. Due to every

phase of the process specific duration, performance

upgrade of data placement can provide overall system

performance boost. In large computer systems with

significant computing power and large memory

consumption this upgrade can make a small notice.

When the computer system is limited to lower

computing power, slower hard disk drives and smaller

amount of RAM available, upgrades made with only

changing the file system and its cluster size can make

significant performance boost from user perspective.

Main reasons for using large database systems are

data protection in event of failure and I/O bottlenecks.

Worst case scenario without adequate data protection

could be reparation of data using database backups.

Backups should be created in short time periods to

full proof system in case of database management

system error. Some other protection methods include

RAID mirror systems and load balancing which can

be expensive, hard to configure and difficult to

maintain. Using RAID is the best option due to

performance increase, but in case of hard disk failure

it can take significant amount of time to recover from

the failure. [1]

Fixing issues without investing in new hardware

requires knowledge in areas specific to database

management system design and file system features.

This process can be time consuming, costly and risky

due to potential of data loss, and unplanned server

downtimes. Choosing a different file system for

database storage can decrease I/O bottleneck, reduce

possibility of write error and generally resolve the

problem without the need for investment into new

hardware and even introduce new features which can

results in increased reliability of the database server

[2].

Linux operating system is commonly used as a

database server due to its scalability, code openness

and ease of administration. Today, a Linux kernel

supports large variety of file systems. Kernels are

constantly upgraded with new features including

support for newly developed file systems and file

system features. A newer file system sometimes does

not boost performance in I/O operation time due to its

improvement on reliability which requires additional

operations on disk [3].

Central European Conference on Information and Intelligent Systems__Page 18 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

To simplify the measurements, standard Linux

operating system with the cache option disabled was

used. The measurements were made using different

cluster sizes with different file systems to determine if

a file system choice can make a difference.

Additionally, sets of tests were performed to

determine correlation of cluster size on the file system

performance. [4]

Measurements were taken by analysing the

database management system speed in reading,

writing and deleting data on the database.

In this article the focus is to show a file system

cluster size correlation to the database performance

using system with a lack of computing power and

without predetermined operating system. Such system

could be implemented in future on embedded system.

Chapter 2 describes the file systems storage. Chapter

3 correlates the file system with the database

management system. Testing methodology is

presented in chapter 4. Results are shown in chapter 5.

Chapter 6 summarizes this paper.

2 File systems

The file system is the facility of the operating system

that organizes files. For example, on DOS and older

Windows PCs, there is a file allocation table (FAT)

that consists of a linked list of clusters where each

cluster consists of a fixed number of sectors, varying

with the overall size of the disk. When the operating

system has to access a file, it can go through the table

and find the clusters belonging to that file, read the

data and send it to the requesting application. Modern

file systems further organize files into groups called

folders or directories, which can be nested several

layers deep. Such hierarchical file system makes it

easier for users to organize the dozens of applications

and thousands of files found on today’s PCs. For

example, a folder called “White-paper” might have a

subfolder for each chapter, which in turn contains

folders for the text and illustrations relating to that

chapter. Besides storing and retrieving files, the

modern file system sets characteristics or attributes

for each file. Typical attributes include write (the file

can be changed), read (the file can be accessed but not

changed), and archive (which determines whether the

file needs to be included in the next backup). In

multi-user operating systems such as UNIX there

are also attributes that indicate ownership (that is,

who has certain rights with regard to the file).

Thus a file may be executable (run as a program) by

anyone, but writeable (changeable) only by someone

who has a “superuser” status. The current generation

of file systems for PCs includes additional features

that promote efficiency and particularly data integrity.

[5][6]

Versions of Windows starting with NT, 2000, and XP

come standard with NTFS, the “New Technology File

System,” which includes journaling, or keeping

records of all transactions affecting the system

(such as deleting or adding a file). In the event of a

mishap such as a power failure, the transactions

can be restored from the journal, ensuring that the

file system reflects the actual current status of all

files. NTFS also uses metadata that describes each

file or directory. Database principles can thus be

applied to organizing and retrieving files at a higher

level.

File systems are a necessity in modern operating

systems. Operating system improvement implicates

file system development. Features like fast indexed

search, better security options are a requirement in

modern operating system implicating a development

of new version or completely new file system. As an

example, FAT32 file system does not enable security

tab option on file property. Windows operating

systems require usage of NTFS file system to enable

security tab on file properties. This is due to

insufficient storage capacity in File Attribute Table of

FAT32 file system.

 There are several aspects of file system which can

distinguish their usability. One of the most important

issues is space management. Other features include

file naming, directories limitation, metadata, utilities,

security permissions and maintaining integrity. Some

of these features are important and can provide large

boosts in computer systems with a shortage of

computing power and memory resources. This

research is intended to provide the data for a file

system implementation usage on such systems.

 Space management defines how a physical unit is

allocated on the disk by the file system. Usually a file

system uses multiple physical units on a device. This

type of allocation results in unused space for a large

percentage of files. For example, saving 1 byte in 512

bytes allocation causes 511 bytes unused space.

Larger allocation units cause increase of unused space

in files and as a consequence poor space management.

Space management is also responsible for organizing

data on a physical disk. Some file systems permit or

require specifying an initial space allocation and

subsequent incremental allocations as the file grows.

As files are deleted, the space they were allocating is

eventually considered available for use by other files.

This creates irregular used and unused areas with

various sizes which is called free space fragmentation.

When a file is created and there is not an area of

continuous space available for its initial allocation,

the space must be assigned in fragments. When a file

is modified such that it becomes larger, it could

exceed the space initially allocated to it. Due to

exceeding of space, another allocation must be

assigned in a different position and because of that the

file becomes fragmented.

Reading and writing data is a complex procedure.

Data stored on a hard disk passes through disk cache

and kernel cache to become available for application.

Cache is computer memory with very short access

time used for storage of frequently or recently used

Central European Conference on Information and Intelligent Systems__Page 19 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

instructions or data. Also it is increasing performance

of the file system and physical disk. There is a

significant disadvantage of the cache. In case of

failure or power loss system cache memory can be

lost. Incomplete operations may result in loss of

operation data or other data already written on the

drive.

One significant responsibility of a file system is to

ensure that, regardless of actions by programs

accessing the data, the structure remains consistent. It

includes actions taken if a program modifying data

terminates abnormally or neglects to inform the file

system that it had completed its activities. This

includes updating the metadata, the directory entry

and handling any data that was buffered, but not yet

updated on the physical storage device.

Other failures which the file system must deal with

include device failures or loss of connection to remote

systems. In the event of an operating system failure or

power failure, special routines in the file system must

be invoked similar to failure of an individual program.

The file system must also be able to correct damaged

structures. These damages might occur as a result of

an operating system failure for which the operating

system was unable to notify the file system. The file

system must also record events to allow analysis of

system issues as well as problems with specific files

or directories. Most modern file systems protect file

system integrity for possible power failures or crashes

via journaling, which groups operations into

transactions that commit automatically.

There are numerous file systems on Linux operating

system: EXT2, EXT3, EXT4, FAT32 and NTFS. The

file systems selected, were targeted according to

availability on various operating systems and Linux

kernels.

 EXT2 (Extended File System) is the oldest file

system on Linux released in January 1993 as a

successor of the EXT file system. EXT2 has been

Linux file system for many years and is still used as

RAM disk file system and when non-journaling file

system is required. EXT2 has proven to be stable and

quite lightweight in terms of overhead. The downside

is lack of journal. [7][8].

EXT3 is the successor of EXT2 implementing journal

option. There are three different mount modes:

journal, ordered and write back. Journal mode logs all

file system data and metadata changes. It is the

slowest of the three EXT3 modes but also the most

secure mode to enable reconstruction of disk in case

of failure. Ordered mode logs only changes in file

system metadata but only writes these changes if file

data write into disk is confirmed. Write back mode is

the fastest EXT3 mode as it only writes metadata

changes into journal before data disk file write is

confirmed. In case of failure the file can be

reconstructed but this mode does not guarantee that

data in the file is correct. Ordered mode is the default

file system mode. EXT2 mode is compatible with

EXT3 mode, meaning that you can mount an EXT3

file system as an EXT2 because the layout on disk is

exactly the same. This enables the existing file system

repair tool and tuning of the system. EXT2 partition

can be easily switched to EXT3 partition without

copying files. EXT3 is based on binary trees to enable

fast indexation of files. [9][10][11]

EXT4 is the newest of all mentioned file systems

developed in October, 2006 as a compatible

improvement of EXT3, featuring support for larger

volumes and support for extend. Extend is a

continuous area of storage reserved for a file. When

starting to write a file, a whole extend is allocated at

start, disabling file fragmentation in a file system.

These improve speed of read operation on disk. EXT4

has the same modes as EXT3 depending on usage of

journal: journal, ordered or write-back. [12]

File Allocation Table (FAT) is the name of computer

file system architecture and a family of industry

standard file systems utilizing it. The FAT file system

is technically relatively simple yet robust. The name

of the file system originates from the file system's

prominent usage of an index table, the FAT, statically

allocated at the time of formatting. The table contains

entries for each cluster, a contiguous area of disk

storage. Each entry contains either the number of the

next cluster in the file, or a marker indicating end of

file, unused disk space, or special reserved areas of

the disk. The root file directory of the disk contains

the number of the first cluster; the operating system

can then traverse the FAT table, looking up the cluster

number of each successive part of the disk file as a

cluster chain until the end of the file is reached. As

disk drives have evolved, the maximum number of

clusters has significantly increased, and so the number

of bits used to identify each cluster has grown. The

successive major versions of the FAT format are

named after the number of table element bits: 12

(FAT12), 16 (FAT16), and 32 (FAT32). Each of these

variants is still in use. The FAT standard has also

been expanded in other ways while generally

preserving backward compatibility with existing

software. Reliability is based on relocation of the root

folder and usage of the backup copy of the file

allocation table instead of the default copy. In

addition, the boot record on FAT32 drives is

expanded to include a backup copy of critical data

structures [13].

NTFS supersedes the FAT file system as the preferred

file system for Microsoft’s Windows operating

systems. NTFS has several improvements over FAT

such as improved support for metadata and the use of

advanced data structures to improve performance,

reliability, and disk space utilization, plus additional

extensions such as security access control lists (ACL)

and file system journaling. The NTFS on-disk format

has five released versions. The latest version 3.1 was

released in autumn 2001.

The structure of an NTFS volume is considerably

different that of the FAT32 file system. NTFS uses

relational database called the master file table (MFT)

Central European Conference on Information and Intelligent Systems__Page 20 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

to manage contents of a volume. The MFT serves

much the same purpose in the NTFS file system that

FAT serves in the FAT file systems. The MFT stores

a record for each file and directory, including the

MFT itself. Each entry includes the name, security

descriptor, and other attributes. The MFT is an array

of data with rows representing file records, and

columns representing attribute fields for each record,

as shown in figure 1[14].

NTFS is a robust, self-healing file system that offers

several customizable features that affect how well

NTFS performs in a given environment. Some of

these parameters are global and others are specific to

individual NTFS volumes. By examining specific

storage needs and then tailoring NTFS volumes

accordingly, some significant increases in systems

disk performance can be achieved [15][16].

Figure 1. MFT structure

Described file systems are available for

implementation in numerous systems. As a file

system and its cluster size options take significant part

in system performance, a study was performed to

measure their speed.

Larger cluster size increases unused space on disk as

described above. This can be a problem in some

systems where memory consumption can be a

significant issue. In our case due to small number of

files that need to be stored this is not the issue. The

goal of this paper is to detect if difference in cluster

size can make significant changes in performance on

different file systems. Due to lack of computational

power of some used systems on our polytechnic,

small differences can make large imprint on the

performance of database management systems [17].

3 Database

A database is a well-organized collection of data,

which is related in a meaningful way, which can be

accessed in different logical orders. Database systems

are systems in which the interpretation and storage of

information are of primary importance. The database

should contain all the data needed by the organization.

As a result of that necessity, a huge volume of data,

the need for long-term storage of the data, and access

of the data by a large number of users has to be

provided by the database management system. [18]

Due to these requirements the file system should be

prompt, durable, reliable and fault-tolerant.

There are small differences in open source database

server features like automatic conversion of code

pages, object-relational extension, XML support and

user defined data types, but both servers are

compatible with SQL’92 standard and ACID

standard. ACID standard describes critical features of

database engines to protect data integrity: Atomic,

Consistent, Isolated and Durable. ACID essentially

means that when a transaction is performed within a

database, either the whole transaction is successful

and the information is written to the database or

nothing is written.

PostgreSQL uses only one storage mechanism named

PostgreSQL storage system. To further increase

performance level, oversized attributes in tables are

stored out-of-line storage in separate file. This

technique is called TOAST (The Oversized-Attribute

Storage Technique) [19].

There are certainly situations where other database

solutions will perform better. PostgreSQL is missing

features needed to perform well on some of the more

difficult queries. It's correspondingly less suitable for

running large data warehouse applications than many

of the commercial databases. If queries like some of

the very heavy ones are needed, other databases such

as Oracle, DB2, and SQL Server have better

performance. There are also several PostgreSQL-

derived databases that include features, making them

more appropriate for data warehouses and similar

larger systems. But unlike them PostgreSQL has

smaller memory and power consumption [3].

Due to its benefits, PostgreSQL open source database

management system was used to measure

performances of most common file systems using

different cluster sizes.

4 Testing methodology

Measurements were run on a Dual CPU Intel

U7300@1.3GHz, 4GB RAM@800MHz, and a

Seagate ST332060AS 320GB 7200RPM SATA2 hard

disk drive. Tests used Linux 3.5.0-17 kernel with the

Ubuntu v12.10 distribution. Measurements were made

on exactly the same partition using 0.57% of the hard

Central European Conference on Information and Intelligent Systems__Page 21 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

disk drive. Partition was formatted to tested file

system. Every measurement was performed according

to algorithm shown in figure 2.

 One hundred measurements were taken for every file

system using one of three actions: insert (write), select

(read) or delete. Between measurements pause was

made precisely 10 minutes to allow the operating

system to perform other activities. Every measure

consisted of 1000 iterations.

Iteration was one database transaction. Database

transaction was timed. One database transaction

commits 1000 database operations. Sum of

transactions time was taken for 100 iterations (100000

rows), 500 iterations (500000 rows) and 1000

iterations (1000000 rows).

Figure 2. Testing metodology algorithm

Average size of all measurements was calculated with

isolated maximal deviations. To measure file system

performance data was sent to database management

system via queries. All queries were randomized with

unstructured flat objects of one kind in bulk mode.

Inserts were done on one table with the same structure

that had testing columns: “ID” type of INT which is

also primary key using BTREE, “testNumber” type of

INT and “testString” type of varchar(100). Index

choice was made on the assumption that the BTREE

is the most preferred index type due to its data

corruption protection unlike hash index. Commits

were made after each 1000 randomized queries.

Queries were executing write, read and delete action

through data manipulation statements. Write action

executes INSERT query according to SQL standard.

As index on ID column needs to be rebuilt, write

action should be the slowest action on database. Read

action executes SELECT query according to SQL

standard. Read action should be the fastest query.

Delete action represent DELETE query. Database

management system used to perform measurements

was PostgreSQL 9.1.7. [20]

5 Results

Result sets were obtained using write, read and delete

actions on Ubuntu 12.10 operating system using

PostgreSQL 9.1.7. database management system. File

systems that were measured include: NTFS, FAT32,

EXT2, EXT3 and EXT4. Due to file system limits for

cluster size option, measurements were performed on

file system cluster sizes shown in Table 1.

Table 1. File system cluster size options

Cluster

size

File system

EXT2 EXT3 EXT4 FAT32 NTFS

512B No No No Yes Yes

1024B Yes Yes Yes Yes Yes

2048B Yes Yes Yes Yes Yes

4096B Yes Yes Yes Yes Yes

8K No No No Yes Yes

16KB No No No Yes Yes

32KB No No No No Yes

64KB No No No No Yes

 Due to detection of large differences in performance

during read and delete actions, additional graphs are

shown. The graphs on figures 3 – 7 are showing

additional data on execution time according to

number of queries on different file systems with

different cluster sizes.

Figure 3 shows reading performance on EXT2 file

system with cluster sizes 1024B, 2048B and 4096B.

It’s evident that the fastest results are achieved with a

cluster size of 2048B, while the results for 1024B and

4096B are practically the same. The same

measurements were repeated on EXT3, EXT4 file

systems, as it’s shown on figures 4 and 5.

On figure 4 it’s evident that the EXT3 file system is

the fastest using 1024B cluster size. The performance

of reading action on EXT3 file system using 1024B

cluster size is almost the same as it’s using a 2048B

cluster size. Results are similar to reading

performance on EXT2 file system.

Measurements of EXT4 file system which are

presented on figure 5 are showing that the cluster size

of 4096B is the best cluster size for reading

performance using a PostgreSQL database.

Central European Conference on Information and Intelligent Systems__Page 22 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

Figure 3. Read action (execution time according to

number of queries on EXT2 file system)

Figure 4. Read action (execution time according to

number of queries on EXT3 file system)

Figure 5. Read action (execution time according to

number of queries on EXT4 file system)

Figure 6. Read action (execution time according to

number of queries on FAT32 file system)

Due to different features of the measured file systems,

on FAT32 and NTFS the cluster sizes differ.

Consequently, FAT32 has clusters sizes of 512B,

1024B, 2048B, 4096B, 8kB and 16kB. NTFS has the

same cluster sizes as FAT32, but adds cluster sizes of

32kB and 64kB.

On figure 6 the performance of FAT32 using read

action is shown. It is evident that the FAT32 file

system is the fastest using a 512B cluster size. The

performance of reading action on FAT32 file system

using a 512B cluster size is almost the same as it’s

using an 8kB cluster size.

NTFS file system read action performance is

presented on figure 7 and the results suggest that it is

the fastest using a cluster size of 4096B. The

performance of reading action on the NTFS file

system using a 512B cluster size is almost the same as

it’s using a 4096B cluster size.

Figure 7. Read action (execution time according to

number of queries on NTFS file system)

Figure 8. Write action (execution time according to

diferent file systems with diferent cluster sizes)

Figure 9. Read action (execution time according to

diferent file systems with diferent cluster sizes)

Central European Conference on Information and Intelligent Systems__Page 23 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

On Figures 8-10 results of actions write, read and

delete are shown using calculated average sizes of all

measures with isolated maximal deviations.

Figure 8 is showing write action on all measured file

systems using different cluster size options as was

presented in table 1. It can be concluded that all file

systems have similar performances on all cluster sizes

except NTFS which is slower due to the MFT

database. The fastest file system measured was

FAT32 using 8kB cluster size. Similar performance

measurements were obtained for EXT2 and EXT3

using a 2048B cluster size. EXT2 and EXT3 using a

2048B cluster size are under 0.1% slower than FAT32

using an 8kB cluster.

Figure 10. Delete action (execution time according to

diferent file systems with diferent cluster sizes)

Measurements of read action presented in figure 9

show that the EXT2 file system using a 2048B cluster

size is the fastest file system measured. The

performance of reading action on FAT32 using 512b

and 8kB, EXT3 using 1024B and EXT4 using 4096B

have similar performances. Due to the MFT database,

the NTFS file system is generally slower than other

tested file systems.

Figure 10 shows that delete action measurements have

similar results, except NTFS which is again slower

than other tested file systems due to reasons

previously mentioned. The fastest file system

measured was FAT32 using 512B.

6 Summary

Databases are widely spread in many application even

in very specific surroundings ex. embedded system

devices. Different surroundings require different

approaches in hardware. In some cases file system

performance could make differences in device viewed

from user perspective. The main goal of this paper is

establishing major differences between common file

system storage cluster size options for database

management systems.

In large and expensive hardware operating conditions

this difference can be small, but in systems with

inferior hardware the difference can be significant.

This papers goal was to try to detect differences of

various file systems and clustering size options.

Depending on the measurements it can be concluded

which file system is the best for implementation to

maximize performance of the system.

The EXT2 file system shows the best performance on

medium cluster sizes (2048B). Following is FAT32

using cluster sizes 512B or 8kB. FAT32 cluster sizes

2048B and 4096B show slower performance than

edge cluster sizes. Other file systems are slower in

most of the cases. It can be concluded that the choice

of file system is EXT2 or FAT32, depending on

simplicity of the implementation on the system or

choice of the installed operating system. The NTFS

file system is the slowest due to MFT database

described in chapter V. It should be used only in case

where security is primary concern which is lacking in

other file systems.

In the future, it would be interesting to measure

transaction performance using different database

cluster sizes in correlation with different file system

cluster sizes on most used open source database

management systems.

References

[1] Derek Vadala, “Managing RAID on LINUX”,

O’Reilley, pp. 11-32

[2] J. B. Chen , Y. Endo , K. Chan , D. Mazieres , A.

Dias , M. Seltzer , M. D. Smith, The measured

performance of personal computer operating

systems, Proceedings of the fifteenth ACM

symposium on Operating systems principles,

p.299-313, December 03-06, 1995, Copper

Mountain, Colorado, United States

[3] Gregory Smith, “PostgreSQL 9.0 High

Performance”, Packt Publishing 2010, pp.69-97

[4] D.P. Bovet and M. Cesati. Understanding the

Linux Kernel (2.nd edition) O’Reilley, 2003

[5] Arnold Robbins, Unix in a nutshell, (Third

edition) O’Reilley, 1999

[6] L. Budin, M. Golub, D. Jakobović, L. Jelenković

Operacijski sustavi, Element, 2010, pp.241-280

[7] Rémy Card, Theodore Ts'o, and Stephen

Tweedie, “Design and Implementation of the

Second Extended Filesystem,” Proceedings of the

First Dutch International Symposium on Linux,

1994.

[8] D. Gibson, Measuring Parameters of the EXT2

File System, University of Wisconsin-Madison

Department of Electrical and Computer

Engineering

Central European Conference on Information and Intelligent Systems__Page 24 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

[9] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau,

Remzi H. Arpaci-Dusseau, Analysis and

Evolution of Journaling File Systems, USENIX

Annual Technical Conference (USENIX-2005),

Anaheim, CA, April, 2005.

[10] R. Card, T. Ts’o, and S. Tweedie. Design and

Implementation of the Second Extended

Filesystem. In Proceedings of the FirstDutch

International Symposium on Linux, 1994.

[11] C. Frost, M. Mammarella, E. Kohler, A. Rayes,

S. Howsepian, A. Matsuoka, L. Zhang,

Generalized File System Dependencies, UCLA,

2011.

[12] M. T. Jones, Anatomy of ext4 - Get to know the

fourth extended file system, IBM-Developer

works, URL:

http://www.ibm.com/developerworks/linux/librar

y/l-anatomy-ext4/, 2010.

[13] Silberschatz, Galvin, Gagne. Operating System

Concepts, Sixth Edition. John Wiley & Sons, Inc.

[14] Jeffrey R. Shapiro, Windows Server 2008 Bible,

Wiley Publishing Inc., 2008, pp. 447-486

[15] Claybrook, Billy G. File Management

Techniques. John Wiley & Sons,

[16] Digit-life.com, “NTFS file system” URL:

http://www.digit-life.com/articles/ntfs/, 2003.

[17] Andrew S. Tanenbaum, Modern operating

systems (Third edition), Pearson, 2009, pp. 290-

310

[18] S. Sumathi, S Esakkirajan, Fundamentals of

Relational Database Management Systems,

Springer-Verlag Berlin Heidelberg 2007, pp. 2-

30

[19] PostgreSQL documentation, TOAST, URL:

http://www.postgresql.org/docs/8.3/static/storage

-toast.html, 2011.

[20] Gregory Smith, “PostgreSQL 9.0 High

Performance”, Packt Publishing 2010, pp. 209-

231

Central European Conference on Information and Intelligent Systems__Page 25 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

