
A Criteria based Decision Tree for Classification

John Tsiligaridis

Math and Computer Science

Heritage University

3240 Fort Road, Toppenish, WA, 98948, USA

 tsiligaridis_j@heritage.edu

Abstract. A Decision Tree algorithm (DTA) from

data is created using construction criteria and also

considering the don’t care attributes, for each level

of the tree. The DTA goal is to create on-demand a

short and accurate decision tree from either data or a

stable (or dynamically changing) set of rules. A set of

steps provides a decision tree with a definite number

of nodes and leaves. The pruning of decision rules

case is also examined with the consequences on the

accuracy. An improved version of DTA (IDTA)

provides smaller DT and eliminates branches by

using the criterion of less length (CLL).

Keywords. Decision Tree, Data Mining

1 Introduction

Decision Trees represent a well-known machine

learning technique used to find predictive rules

combining numeric and categorical attributes, which

raises the question of how associate rules compare to

induce rules by a decision tree [1].

In decision trees the input data set has one attribute

called class C that takes a value from K discrete

values 1,..,K and a set of numeric and categorical

attributes A1,..,Ap. [1].

The goal is to predict C given A1,..,Ap. Decision trees

algorithms automatically split numeric attributes Ai

into two ranges and they split categorical attributes Aj

into two subsets at each node. The basic goal is to

maximize the class prediction accuracy P(C=c) at a

terminal node (also called node purity) where the

most points belong to class c and c  {1,..K}.

The splitting process is recursively repeated until the

end of the data or until there is no improvement of

prediction accuracy with a new split.

The final step involves pruning nodes to make the tree

smaller and to avoid model overfit.

The output is a set of rules that go from the root to

each terminal node consisting of a conjunction of

inequalities for numeric variables (Ai<=x, Ai>x) and

set containment for categorical variables (Aj 

{x,y,z}) and a predicted value c for class C.

In general, DTs have reasonable accuracy and they

are easy to interpret if the tree only has a few nodes.

Accuracy of a classifier on a given test set is the

percentage of test set tuples that are correctly

classified by the classifier.

 There are two types of DT: the complete and the

incomplete one. In the incomplete there are subtrees

where the repetition and replication are included [2].

Repetition is where an attribute is repeatedly tested

along a given branch of three , e.i. age, and replication

where duplicate subtrees exist within a tree , such as

the subtree headed by the node “credit_rating” [2].

Two theorems are developed the first discover any of

the two types of a DT in advance given the rules or

data, and the second identifies the don’t care

attributes.

 Decision tree is a very popular and practical

approach for pattern classification. There are various

algorithms for construction decision trees like ID3,

C4.5 and CART[2],[3]. The ID3 [4] uses the

information gain measure to choose the splitting

attribute. To build a decision tree, information gain is

calculated for each and every attribute and the

attribute with the highest information gain is selected

and designated as a root node. ID3 is based on

information theory and uses the log function with

base 2 for encoded information in bits. DTA can

build a DT classifier from a set of data, without the

use of the log function. DTA has a processing method

similar to the way ID3 works, for finding root and

splitting attributes, by utilizing the discovery of

maximum values of conditional probabilities instead

of the higher information gain. The phases of DTA

also cover the case of finding a leaf at the end of a

branch without checking whether all the instances

are falling under the same class as it happens in ID3.

With the CLL the case of extension of a subtree with

a new attribute is examined. DTA and IDTA can

provide DT with no repetition and replications which

are unfavorable for the classification. The C4.5 is an

extension to ID3 [5] and uses the criterion of gain

ratio which takes into account the number of

outcomes produced by the attribute test condition.

The attributes with the maximum gain ratio are

selected as the splitting attribute. It removes the

biasness of information gain when there are many

outcome values of an attribute. DTA processing is

also similar to the one of C4.5. CART produces

binary trees. Gini index measure does not use

Central European Conference on Information and Intelligent Systems__Page 14 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

probabilistic assumptions like ID3, C4.5. CART [2]

uses cost complexity pruning to remove the unreliable

branches from the DT to improve accuracy.

In [6] simplification methods of Decision Trees are

developed. A new decision tree based classification

algorithm, called SPRINT, has been developed in [7]

for categorical and continuous attributes in a parallel

environment.

2 Model Description

2.1 The DTA

The attributes selection measures, determine how the

tuples at a given node are to split. There are two types

of attributes that are considered; the “split” or

“occupied” and the “free”. The first type is already

included in the tree while the latter is the attribute

that is not yet included. The tree has three types of

nodes; a root node, internal nodes and leaf or terminal

nodes.

 For the construction of the DTA two construction

criteria are used: (a) finding the root (max(p(ci / n) ,

n: is the # of tuples) (criterion 1), (b) discovering

which branch will be connected with the next node

(attribute) using conditional probabilities (criterion

2). The characteristic of the DTA is that the projection

of the probabilities of all attributes over a predefined

value of C (=ci) is examined.

The DT can be created in the following phases:

Phase 1: Discover the root (i) (from all attributes)

max (p(Ei) = max(


k

i

ii DpAp
1

)()(), k= #

attributes, for all n , number of tuples

Phase 2: Discover the branches (splitting the root)

from the conditional probabilities (P(Bi),for

node(attribute) B, so that max (P (Bi)) = max (p(A i =

v i / P(C=ci)))  0

If there is a value of attribute, i=k, so that p(A k= v k /

P(C=ck))  0 and for all the other, mk, p(A k= v k /

P(C=cm))=0 , then there is a branch with the value of

the attribute Ak and node B becomes a leaf node with

assigned ck as a class label.

Phase 3: Discover the next node to be connected

(with the root) . For each value i of the occupied

attribute Ai find the next free attribute Aj the :

max (p(Ei) = 



k

j

cjcjpipi vAvAp
1

,,,,)/(, k= #

of values of Aj attribute, for n = # tuples, The term

Ai,p = vi,p means the attribute Ai with value vi

It is possible to consider Phase 0, where you can

define the value of the category with the maximum

value, max{ pr(C=c)}

 From all the above the DTA pseudocode is as

follows:

Example 1:

Let’s consider the weather example

Weather parents money decision (Example)

Sunny yes rich cinema

Sunny no rich Tennis

…..

Windy no rich cinema (7*)

…..

Following the steps of DTA we have:

(a)Discovering root: P(E) = (5/10)*(5/10) +

(5/10)*(1/10) = 0.3 (phase 1)

(b)Discovering branches: max (P (Bi)) =(p(yes

parents / C=”cinema”) , p(yes parents / C=”tennis”) ,

p(yes parents / C=”shopping”) , p(yes parents /

C=”stay in”) = max (5/6,0, 0,0) (phase 2)

(c)Discovering next node: p(no parents /

weather=”sunny”) + p(no parents / weather

=”windy”) + p(no parents / weather=”rainy”) = 2/3 +

1/3 + 1/3 = 4/3 (phase 3)

 From the above: (a) parents have the highest

value and become the splitting attribute at the root

node of the DT, (b) the left branch (for “yes” on

parents) the decision is “cinema” no matter what the

value of the other two attributes is, (c) the right

branch (the “no”)of parents is connected with the

weather attribute. (d) the process continues with the

(3) and (4) in the while loop.

The DT is:

 Yes no

 sunny rainy

 windy

 rich poor

parents

weather

money

cinema

tennis
Stay-in

shopping cinema

 Fig. 1 The Decision tree created by DTA

DTA : Input : training data

Output: decision tree

1. define root node (phase 1)

2. discover the branches from root (phase 2)

while (! end of the attributes)

 { 3. discover the next node (phase 3)

 4. splitting the attribute (phase 2) }

Central European Conference on Information and Intelligent Systems__Page 15 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

This DT consists of 3 nodes and 5 leaves with 100%

classification accuracy for the data

From DT we can get the rules and some of them are

dntca (from “don’t care”). The rule set can be created

by running the tree.

Example 2:

R1 Cinema<- parents=”yes” &

weather=”dntca” & money=”dntca”

From R1 when parents=”yes” then D=”cinema” and

no matter what are the other attributes.

Phase 1 is analogous, discovering the root with the

highest value of information gain [2],[3].

2.2 Prunning the rules

We can extract the rules either from the DT by simply

finding the paths from root to a leaf node in the form

of IF-THEN rules. If the rules are pruned or if we

prune the last level then we will have less accuracy.

If line 7 is erased: windy, no (parents), rich ->

cinema and then accuracy 1 out of 10 , giving

predictive accuracy 90% and consists of 2 nodes and

4 leaves. Fig. 2 provides the new DT with the less

accuracy using DTA.

 Yes no

 sunny rainy

 windy

parents

weather cinema

tennis
Stay-in

shopping

 Fig. 2 DT after pruning

2.3 The IDTA

For an attribute (attr1) with value v1, if there are

tuples from attr2 that have all the values in relation

with v1 (of attr1) then the attr2 is named as: don’t

care attribute (see Example2, see R1). The way of

discovering the existence of don’t care attributes is

developed by using conditional probabilities and by

applying the criterion of less length (PCLL).

 It is supposed that all the attributes are conditional

independent given the class value C=ci.

 From the conditional independence assumption,

given the class value and the value ak of an attribute

Ak , we can have:

P CLL = P(A1 =a1,…, A|A| = a|A| | C=ci , Ak=ak) =





||

1

)|(
A

i

jii cCaAp (1)

In (1) we take into consideration only tuples with

Ak=ak. According to the criterion of CLL; if the P CLL

 0, between two attributes (A1, A2) then A2 is a

don’t care attribute. The CLL criterion is valid when

P CLL  0. A branch is eliminated when the PCLA  0.

If P CLL =0 new partitions have to be included in the

DT.

Example 3: From the left branch of the DT (cinema)

we figure out that it is not necessary to have more

probable partitions. Here the parent attribute is :

parents =”yes” and the child attribute is: weather.

PCLL = P(A1 =a1,…, A|A| = a|A| | C=ci) = P(weather

=sunny | C=”cinema”) * P(weather =windy |

C=”cinema”) * P (weather =rainy | C=”cinema”) = 1/

5 * 2/5 * 2/5  0. We also get the same result (PCLL 

0) when we consider the money attribute under the

parent attribute.

Hence when parents=”yes”, there are don’t care

attributes (weather, money) and the left branch will

stop without any extension.

 A DT is complete when it has 100% accuracy,

(all tuples are qualified). After finding the root and if

the criterion CLL for any of the attributes is not valid

there is a possibility to have repetitions (incomplete

tree) [2].

 A theorem can provide the possibility of a

complete DT existence in advance, given the data or

the rules.

Theorem 1: The CLL criterion can determine the

existence of a small DT with the best accuracy

(100%, or complete) avoiding repetitions and

replications.

Proof: Due to the validity of CLL criterion,

repetition is discouraged. Having n-1 remaining

attributes out of n, after discovering the root attribute,

and the CLL criterion is not valid, for any of n-1

attributes, new partitions have to be included for the

DT. A fact that increases the risk to have an

incomplete tree (repetitions, replications). 

CLL criterion can minimize the height of the DT.

In case that CLL criterion is valid for many of the

attributes the tree becomes of smaller height ('dense')

which facilitates the read operation for finding rules.

The validity of CLL can be applied after the creation

of each node. Phase 2 (splitting the attribute) from

DTA have to be enriched with the CLL criterion so

that repetitons or replications are avoided.

If DT can not cover all the data, this is also a

problem. CLL can locate this problem, but this is not

the focus of this paper. After all of the above, the

steps for IDTA are as follows:

Central European Conference on Information and Intelligent Systems__Page 16 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

Theorem 2: The CLL can define the don’t care

attributes.

Proof: From the definition of PCLL and from the

parent attribute k and the child attribute m if PCLL  0

then the attribute m is a don’t care attribute. 

Example 4: Consider the case of getting a loan with

attributes: age has_job, own_house, credit_rating.

After finding the “own_house” as a root (phase 1) ,

the PCLA is computed, in order to discover the

branches from root. PCLA = P(A1 =a1,…, A|A| = a|A| |

C=ci) = P(age =young , own_house=”y” | C=”yes”) =

P(age =young | C=”yes”) * P(own_house=”y” |

C=”yes”)  0. The same with age =”middle” and

age=”old”. So, P(age =middle | C=”yes”) *

P(own_house=”y” | C=”yes”)  0, and P(age =old |

C=”yes”) * P(own_house=”y” | C=”yes”)  0

From the above, the PCLA proves, that it is not

appropriate to extend the branch (own_house (with

true) -> ‘yes’) in order to include the “age” attribute.

Hence, by applying the PCLA shows that the “age”

belongs to the don’t care attribute.

3 Some Analytical Results

For ID3 at each node y the gain is calculated from ny

(# of candidate attributes at y), and from my (# of

examples that reach y. The complexity of choosing

an attribute is O(ny * my) . For each level i of the tree

there are mi number of examples (bounded by m) and

the number of attributes (n-i). So, it takes O(m * (n-i))

to find the splits for all nodes at level i. In the worst

case, the tree will be of depth n and the total

complexity will be O(m*n2). DTA has the same

complexity with ID3, since the operations are similar.

Therefore at each level i the complexity of choosing .

an attribe is O(m * (n-i)), as previously. IDTA has the

additional step of CLL which increases the

complexity of choosing an attribute for a k node of

the DTA, by the O(nk*mk).

Simulation results, for a size of data of 15 , show that

ID3 , DTA, and IDTA have 95.23%, 95.25% and

95.30% accuracy respectively. IDTA comparing with

DTA and ID3, has better accuracy since it discourages

the repetitions.

4 Conclusion

Two algorithms for discovering DTs have been

developed also considering the don’t care attributes.
The DTA works iteratively with probabilities in order

to find the nodes and the branches. The IDTA works

more systematically with priority searching of the

don’t care attributes using the CLL and DTA. Both of

them have the purpose of creating a smaller DT

without repetition and replication. Moreover, DTA

has the same complexity as ID3. The accuracy is

better for IDTA due to the construction with CLL.

Future work could elaborate more on classification

issues with neural networks.

References

[1] C. Ordonez, Comparing Association rules and

Decision Trees for Disease Prediction, HIKM 2006,

Non. 11, 2011, Virginia

[2] J.Han, M. Kamber, J. Pei , Data Mining Concepts

and techniques, MK, 3ed, 2012

[3] P. Tan, M. Steinbach, V. Kumar, Introduction to

Data Mining , 2006, Addison Wesley;2006.

[4] J.R. Quinlan, “Induction of decision trees”,

Journal of Machine Learning, 1(1986) pp. 81-106.

[5] J.R. Quinlan,”C4.5 : Programs for machine

Learning” , Morgan Kaufmann Publishers, Inc, 1992

[6] J.R. Quinlan, ”Simplifyig Decision Trees”, Intl. J.

Man-Machine Studies 27:221-234, 1987

[7] J.Shafer, R. Agrawal, M. Metha,“SPRINT: A

sclabale Parallel Classifier for Data Mining“ , in Proc.

of 22nd VLDB Conf., Bombay,India, pp.544-

555,September 1996.

IDTA : Input : training data

Output: decision tree

//root operation

1. define root node (phase 1)

2. discover the branches from root (phase 2a)

 apply CLL (phase2b)

//node operation

while (! end of the attributes)

 {

 3. discover the next node (phase 3)

4. //apply CLL (phase 2a)

 if P CLL  0 (valid)

 { branch eliminated}

 else {splitting attribute}

}

Central European Conference on Information and Intelligent Systems__Page 17 of 296

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 18-20, 2013

