
 
Towards Automatic Generation  

of Parallel Programs  
 

Nikola Ivković, Danijel Radošević, Ivan Magdalenić 
Faculty of Organization and Informatics 

University of Zagreb 
Pavlinska 2, 42000 Varaždin, Croatia 

{nikola.ivkovic, danijel.radosevic, ivan.magdalenic}@foi.hr 
 
 

Abstract. Although there are various parallel 
programming models introduced and supported by 
different communication protocols, the building of 
parallel applications is still a kind of handwork. This 
paper deals with opportunity of using Generative 
Programming techniques in parallelization of 
program functions written in a standard, non-parallel 
manner. Particularly, the usage of SCT generator 
model is discussed within generation of parallel 
programs based on the MPI communications 
protocol. An example of such generator was 
developed and tested. 
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1 Introduction 

 
Various optimization problems, simulation and 

scientific calculations are often time-consuming and 
require computers with powerful and expensive 
hardware. Often, the computing problems can be 
decomposed into several subtasks that can run 
simultaneously on multiple computers. Parallel 
execution of programs enables their execution faster 
and such implementations are cheaper. But the 
parallel program execution brings new problems. All 
tasks cannot be parallelized. It is difficult to create 
and synchronize tasks and it is hard to discover bugs 
in programs. These are some of the obstacles in use of 
parallel programs. 

This paper deals with opportunity of using 
Generative Programming techniques in parallelization 
of program functions written in a standard, non-
parallel manner. There are a lot of generative 
programming techniques, and we decided to apply the 
already proven SCT model of source code generator 
[1]. By using generative programming techniques, we 
want to hide the complexity of constructing parallel 
programs that can run on multiple computers using 
the MPI protocol.  

The basic idea of our solution is as follows. A 
programmer divides the problem into subtasks that 

can run in parallel. Our system generates needed 
source code that enables parallel execution. The 
programmer executes the program on multiple 
computers. The programmer does not need to have the 
knowledge of parallel programming techniques. 

Issues addressed in our solution are creation and 
scheduling of tasks on multiple computers, their 
mutual communication and results collection. This is 
the first step toward building of such a system and the 
proposed solution is not complete. For example, a 
problem of possible various data type is not covered 
in this paper.  

The paper is organized as follows: a background 
to the research is given in section 2. A model of 
parallelization is presented in section 3 which is 
followed by a case study described in section 4. The 
short description of SCT source code generator model 
is presented in section 5 followed by description of 
generator implementation. The conclusion is given in 
section 6.  
 
2 Backgrounds to the Research 

 
Because of all the hardness of parallel 

programming, for a long time researchers are trying to 
resolve a problem of automated parallelization. At 
this point, a complete automation of code 
parallelization at the compiler level seems to be 
unachievable goal. Currently there are only partial 
solutions. One is automatic parallelization of 
sequential code that can produce parallel code in 
some special cases. The rest of the code that could be 
parallelized is left sequential due to imperfection of 
current methods and tools. For a single multiprocessor 
machine this can be achieved purely on compiler 
level. For a system of processors that communicate 
over network some standardized protocol for 
exchanging data has to be supplemented, usually with 
additional libraries.  

Another approach is to relay on human 
intervention, but also to provide substantial help for 
creating parallel programs. We use this second 
approach by using SCT source code generator model 
[1] for the generation of the needed source code. The 
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SCT model is designed to work with code-fragment-
sized components. The same approach is used in [2]. 
Our components are not necessarily strictly connected 
to program organizational units, like classes or 
methods.  Consequently, our approach differs from 
the metaclass-based approaches, as described by 
Grigorenko et al. [3] and Tolvanen and Rossi [4].  

Our implementation uses Message Passing 
Interface (MPI) that has become de facto standard for 
distributed system application. The MPI is a 
language-independent communications protocol that 
uses a message-passing paradigm to share data and 
states among a set of cooperative processes running 
on a distributed memory system [5]. MPI 
specification (Forum, MPI) defines a set of routines to 
support various parallel programming models such as 
point-to-point communication, collective 
communication, derived data types, and parallel I/O 
operations [5]. It is widely used in versatile 
distributed systems for solving challenging 
computational problems [6, 7,8, 9, 10]. 
 
3 A model of parallelization 
 

To utilize a parallel architecture, a computational 
task has to be disassembled to a set of smaller 
subtasks that can be executed in parallel. There are 
different paradigms of parallel execution, but multiple 
instructions – multiple data streams (MIMD) 
architecture is the most general and most useable in 
practice.  

In principal MIMD system can be implemented as 
shared memory or distributed memory system. A 
shared memory system consists from tightly coupled 
processor cores that have direct access to a pool of 
memory called shared memory. A distributed memory 
system is made from independent processing nodes 
that communicate using network. 

In generally it is easier to write programs for a 
shared memory system then for a distributed memory 
system, since reading and writing memory doesn’t 
need special mechanicals for communication. 
Nevertheless, an appropriate synchronization for 
writing memory is inevitable to ensure correct 
execution. Another advantage of a shared memory 
system is a fast access to the shared memory, while 
nodes in a distributed memory system have to 
exchange messages to communicate (which usually 
takes mach more time). Time to exchange a message 
is more critical in the distributed memory system 
called grid. In a grid nodes are usually geographically 
distant and have network connections of lower speed, 
then in the distributed memory system called cluster, 
where nodes are connected with a high speed LAN 
network. In contrast to shared memory systems that 
are less scalable and have to be specially 
manufactured, distributed memory systems are very 
scalable and are also cheaper (because they can use 
standard computers connected with a standard 
network technology). 

In distributed memory systems there are numerous 
possibilities to connect nodes in different topologies. 
Also, nodes can be in the peer-to-peer relation or can 
have same hierarchy or master-slave relation. 

Our model of parallelization is based on MPI 
technology that is designed for distributed memory 
systems (any topology), but can also be used in shared 
memory systems. It can also be combined with 
massive parallelism provided by GPU architecture 
[11]. Although simple, a master-slave model, it is 
suitable for very wide set of practical problems. In the 
master-slave relation one node – the master is 
coordinating node and all the others are slaves – the 
nodes that do parallel calculations and report their 
results to the master node. 
In our model the essential module that is 
automatically generated is implemented with 
ExecuteInParallel() function. From a 
programmer’s point of view our 
ExecuteInParallel() function is a black box that 
receives vector of input data and procedure to be used 
on these data in parallel fashion. As an output, 
ExecuteInParallel() gives a vector of results. 
Abstract representation of such module is given in the 
Figure 1.  

 
Figure 1. A model of parallelization 

 
To gain maximal speedup it is the best to use all 
available nodes in the system. One node should be 
dedicated to a master process, and the rest k nodes 
should be assigned to k slave processes. If number of 
subtasks provided by a programmer are greater than a 
number of slave processes then some nodes will have 
to do more than one task. The tasks are scheduled in 
round robin fashion, so the slave process number i 
should execute tasks i, i + k, i + 2k,  i + 3k, … After 
the master process receives the results from all 
subtasks, it provides a vector of results to a 
programmer as an output (Figure 1). 
 
4 Case Study 
 
An aim of this work is to examine possibility of using 
generative programming to hide the complexity of 
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using a distributed system of processors to speed up 
time demanding computations. As the first steps 
toward this goal is to make a case study on a simple 
example. Calculating transcendental number π on 
arbitrary number of significant digits is possible by 
calculating partial sum of series, where partial sum 
can be conveniently defined by recurrent relation (1) 
 

      (1) 
 

The term an represents approximation of number π/4. 
For a higher value of n the approximation of number 
π is more accurate. The recurrence relation (1) can 
easily be implemented in a programming language, 
for example as in the Code 1. 
 
Code 1 Simple sequential code in C/C++ language 
for calculating number π 
double PI(long N){ 
  double ai  = 0, sign = 1, i; 
  for (i = 1 ; i <= N ; i++){ 
    ai += sign / (2 * i - 1); 
    sign *= -1; 
  } 
  return ai * 4;   
} 
 
The main problem with this procedure is that, in order 
to achieve high precision, it is necessary to calculate 
this term in a large number of iterations. Therefore, an 
available time is limiting factor to achieve high 
accuracy. To maintain code simple we use double 
data type, but in general abstract data types that can 
store number with arbitrary precision can be used. 
The first step in writing a program that can execute 
this calculation in parallel is to decompose an original 
task of calculating π to a number of smaller tasks. 
New tasks should be able to do parts of original task 
in a way that their results can easily be combined into 
final solution. This decomposition can be done in 
many different ways so in our opinion it is most 
suitable to leave this choice to a programmer.  
A complete source code of our implementation is 
shown in code 2. A code on the grey background 
should be written directly by the programmer and all 
the rest is automatically inserted by program 
generator. In our case study we divided task in a way 
that smaller task calculates partial sum only for 
iterations from some subinterval.  
As a language of implementation a C++ was chosen 
since C & C++ are regularly used for high 
performance computing. To maintain code more 
compact an object-oriented programming model was 
used in our implementation. A class of objects named 
FractionOfPi contains starting and ending iteration 
as well as resulting value for a fraction of π. Besides 
constructor, it implements member function 
perform() that calculates a fraction of π and stores it 

to the partialSum, and the member function 
result() that simply retrieves calculated value. 
Programmer also needs to divide task of calculating π 
into smaller tasks, and to call function 
ExecuteInParallel(). All the work of calculating π 
is done in parallel, using nodes of a distributed 
system. At the end, the partial results are store in the 
vector ps. If necessary a programmer can combine 
provided results in the final result, in his case simply 
by summing the fraction of π. The rest of the code, 
with white background, deals with technical details to 
provide parallel execution and necessary 
communication and synchronization between nodes. 
A MasterProces() function receives the results from 
tasks executed on the other nodes and also provides 
synchronization by suspending the execution of 
master process until all scheduled tasks are finished. 
Another function, SlaveProces() execute one or 
more smaller tasks and, at the end of each task, send 
the results to the master process. Generator also 
inserts code that maintains data about distributed 
system; at the beginning initializes and at the end 
releases MPI resources. 
 

5. Usage of generator 
 
The SCT generator model defines the source code 
generator from three kinds of elements: Specification 
(S), Configuration (C) and Templates (T). All three 
model elements together make the SCT frame (Figure 
1). The Specification contains features of generated 
application in a form of attribute-value pairs. The 
Template contains source code in a target 
programming language together with connections 
(replacing marks for insertion of variable code parts). 
The Configuration defines the connection rules 
between specification and template. 
A starting SCT frame (Figure 2) contains the whole 
specification, the whole configuration, but only the 
base template from the set of all templates. Other SCT 
frames are produced dynamically, one SCT frame for 
each connection in upper template. SCT generator 
model is generator model based on dynamic frames, 
unlike some other frames-based generator models, 
like XVCL [12]. Generator works as a variation 
mechanism. It propagates the features specified in 
Specification on a set of program fragments, named as 
Templates. The connection rules are determined by 
Configuration. 
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Code 2 A distributed implementation for calculating the number π in C++  with MPI 
#include"mpi.h" 
#include<vector> 
#define PARTIALPIMESSAGE 531 
 
struct MPI_related_data{ 
  int thisProcesID; 
  int NumberOfProcesses; 
} mpi_data; 
 
class FractionOfPi{ 
  long long start, stop; 
  double partialSum; 
public: 
  FractionOfPi(long long _first, long long _last):start(_first),stop(_last){} 
  void perform(void); 
  void result(double &sum) {sum=partialSum;} 
}; 
 
void FractionOfPi::perform(void){ 
  double ai  = 0, sign = (start%2==0)? -1 : 1; 
   
  for (long long i = start ; i <= stop ; i++){ 
    ai += sign / (2 * i - 1); 
    sign *= -1; 
  } 
  partialSum=ai * 4; 
} 

 
 
 
 
 
 
 
 
// #class#  

void MasterProces(std::vector<double> & output){ 
  MPI_Status stat; 
  int NumberOfSlaves = mpi_data.NumberOfProcesses - 1; 
  for(int procNum = 1; procNum < mpi_data.NumberOfProcesses; procNum++) 
    for(size_t i = procNum; i <= output.size(); i += NumberOfSlaves) 
      MPI_Recv(&output.at(i-1), 1, MPI_DOUBLE, procNum, PARTIALPIMESSAGE, MPI_COMM_WORLD, &stat); 
} 
void SlaveProces(std::vector<FractionOfPi> & input){ 
  double r; 
  int NumberOfSlaves=mpi_data.NumberOfProcesses-1; 
  for(size_t i=mpi_data.thisProcesID; I <= input.size(); i += NumberOfSlaves){ 
    input.at(i-1).perform(); 
    input.at(i-1).result(r); 
    MPI_Ssend(&r, 1, MPI_DOUBLE, 0, PARTIALPIMESSAGE, MPI_COMM_WORLD); 
  } 
} 
void ExecuteInParallel(std::vector<FractionOfPi> & input, std::vector<double> & output){ 
  if(mpi_data.thisProcesID==0){ 
    output.resize(input.size()); 
    MasterProces(output); 
  } 
  else  SlaveProces(input); 
} 
#include<iostream> 
using namespace std; 
int main(int argc, char **argv){ 
     atexit((void (*)())MPI_Finalize);     
  if(MPI_Init(&argc,&argv)!=MPI_SUCCESS) exit(1); 
  if(MPI_Comm_size(MPI_COMM_WORLD,&mpi_data.NumberOfProcesses)!=MPI_SUCCESS) exit(2); 
  if(MPI_Comm_rank(MPI_COMM_WORLD,&mpi_data.thisProcesID)!=MPI_SUCCESS) exit(3); 
  vector<FractionOfPi> pp; 
  vector<double> results; 
  pp.push_back(FractionOfPi(1,100000000));        // #interval# -> 1,100000000  
  pp.push_back(FractionOfPi(100000001,200000000));// #interval# -> 100000001,200000000 
  pp.push_back(FractionOfPi(200000001,300000000));// #interval# -> 200000001,300000000 
  pp.push_back(FractionOfPi(300000001,400000000));// #interval# -> 300000001,400000000 
  ExecuteInParallel(pp, results); 
  if(mpi_data.thisProcesID==0){ // this block of code is executed only by master process 
   double totalsum=0.0; 
   for(size_t i=0; I < results.size(); i++) totalsum += results.at(i); 
   cout<<"PI = "<<totalsum<<endl; 
}// end of block executed only by master process 
return 0; 
} 
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Figure 2. SCT Frame 

 
The Specification consists from attribute-values pairs 
and for the given example could look as follows: 
 

OUTPUT:out1 
 
out1:output/parallel.cpp 
 
class:FractionOfPi // class name 
tasks:4  // number of tasks 
//intervals: 
interval:1,100000000 
interval:100000001,200000000 
interval:200000001,300000000 
interval:300000001,400000000 

 
There is one type of output specified, out1, and one 
output file to be generated, output/parallel.cpp . The 
output type is connected to appropriate top-level 
template, which is defined in Configuration as #1#. 
The Configuration connects attributes to links 
(replacing marks) that are used in Templates: 
 

//main template 
#1#,,main.template 
 
//simple connections: 
#class_name#,class 
#interval#,interval 
 
// using subordinated template: 
#class#,class,class.template 

 . . . 
 

Templates and their connections could be easily 
represent by Configuration diagram [1], as shown in 
Figure 3. The Main template contains the basic 
structure of the code to be generated, including the 
majority of the parallel resources. Triangles represent 
replacing marks i.e. parts of the code to be defined 
during the generation process. Rounded rectangles 
represent values from Specification. 
This architecture of generator offers a lot of flexibility 
into design of parallel systems. All three model 
elements (Specification, Configuration and 
Templates) could be easily extended enabling 
adaptation of generator system to the needs of parallel 
processing. 

 

Main
--------------

main.template
#class#

class

Class
--------------

class.template

#class_name#

class

. . .. . . . . .  
 
Figure 3. Configuration diagram of the example 
 

 
6 Conclusion 
 
Our research shows that using generative 
programming can hide technical peculiarities and 
complexity from programmer and yet provide it with 
ability to use distributed system to speed up 
computationally demanding calculations. By 
employing distributed system this method has very 
high scalability.  
Although, this model is developed on a simple case 
study it seems general enough to handle a whole class 
of practical problems.  In future work we are planning 
to extend our model so it can handle more general 
cases and possibly to offer some alternative modes 
and network topologies through our program 
generator. 
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