

Towards Automatic Generation

of Parallel Programs

Nikola Ivković, Danijel Radošević, Ivan Magdalenić
Faculty of Organization and Informatics

University of Zagreb
Pavlinska 2, 42000 Varaždin, Croatia

{nikola.ivkovic, danijel.radosevic, ivan.magdalenic}@foi.hr

Abstract. Although there are various parallel
programming models introduced and supported by
different communication protocols, the building of
parallel applications is still a kind of handwork. This
paper deals with opportunity of using Generative
Programming techniques in parallelization of
program functions written in a standard, non-parallel
manner. Particularly, the usage of SCT generator
model is discussed within generation of parallel
programs based on the MPI communications
protocol. An example of such generator was
developed and tested.

Keywords. generative programming, generator,
parallel program, distributed system

1 Introduction

Various optimization problems, simulation and

scientific calculations are often time-consuming and
require computers with powerful and expensive
hardware. Often, the computing problems can be
decomposed into several subtasks that can run
simultaneously on multiple computers. Parallel
execution of programs enables their execution faster
and such implementations are cheaper. But the
parallel program execution brings new problems. All
tasks cannot be parallelized. It is difficult to create
and synchronize tasks and it is hard to discover bugs
in programs. These are some of the obstacles in use of
parallel programs.

This paper deals with opportunity of using
Generative Programming techniques in parallelization
of program functions written in a standard, non-
parallel manner. There are a lot of generative
programming techniques, and we decided to apply the
already proven SCT model of source code generator
[1]. By using generative programming techniques, we
want to hide the complexity of constructing parallel
programs that can run on multiple computers using
the MPI protocol.

The basic idea of our solution is as follows. A
programmer divides the problem into subtasks that

can run in parallel. Our system generates needed
source code that enables parallel execution. The
programmer executes the program on multiple
computers. The programmer does not need to have the
knowledge of parallel programming techniques.

Issues addressed in our solution are creation and
scheduling of tasks on multiple computers, their
mutual communication and results collection. This is
the first step toward building of such a system and the
proposed solution is not complete. For example, a
problem of possible various data type is not covered
in this paper.

The paper is organized as follows: a background
to the research is given in section 2. A model of
parallelization is presented in section 3 which is
followed by a case study described in section 4. The
short description of SCT source code generator model
is presented in section 5 followed by description of
generator implementation. The conclusion is given in
section 6.

2 Backgrounds to the Research

Because of all the hardness of parallel

programming, for a long time researchers are trying to
resolve a problem of automated parallelization. At
this point, a complete automation of code
parallelization at the compiler level seems to be
unachievable goal. Currently there are only partial
solutions. One is automatic parallelization of
sequential code that can produce parallel code in
some special cases. The rest of the code that could be
parallelized is left sequential due to imperfection of
current methods and tools. For a single multiprocessor
machine this can be achieved purely on compiler
level. For a system of processors that communicate
over network some standardized protocol for
exchanging data has to be supplemented, usually with
additional libraries.

Another approach is to relay on human
intervention, but also to provide substantial help for
creating parallel programs. We use this second
approach by using SCT source code generator model
[1] for the generation of the needed source code. The

Central European Conference on Information and Intelligent Systems__Page 227 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

SCT model is designed to work with code-fragment-
sized components. The same approach is used in [2].
Our components are not necessarily strictly connected
to program organizational units, like classes or
methods. Consequently, our approach differs from
the metaclass-based approaches, as described by
Grigorenko et al. [3] and Tolvanen and Rossi [4].

Our implementation uses Message Passing
Interface (MPI) that has become de facto standard for
distributed system application. The MPI is a
language-independent communications protocol that
uses a message-passing paradigm to share data and
states among a set of cooperative processes running
on a distributed memory system [5]. MPI
specification (Forum, MPI) defines a set of routines to
support various parallel programming models such as
point-to-point communication, collective
communication, derived data types, and parallel I/O
operations [5]. It is widely used in versatile
distributed systems for solving challenging
computational problems [6, 7,8, 9, 10].

3 A model of parallelization

To utilize a parallel architecture, a computational
task has to be disassembled to a set of smaller
subtasks that can be executed in parallel. There are
different paradigms of parallel execution, but multiple
instructions – multiple data streams (MIMD)
architecture is the most general and most useable in
practice.

In principal MIMD system can be implemented as
shared memory or distributed memory system. A
shared memory system consists from tightly coupled
processor cores that have direct access to a pool of
memory called shared memory. A distributed memory
system is made from independent processing nodes
that communicate using network.

In generally it is easier to write programs for a
shared memory system then for a distributed memory
system, since reading and writing memory doesn’t
need special mechanicals for communication.
Nevertheless, an appropriate synchronization for
writing memory is inevitable to ensure correct
execution. Another advantage of a shared memory
system is a fast access to the shared memory, while
nodes in a distributed memory system have to
exchange messages to communicate (which usually
takes mach more time). Time to exchange a message
is more critical in the distributed memory system
called grid. In a grid nodes are usually geographically
distant and have network connections of lower speed,
then in the distributed memory system called cluster,
where nodes are connected with a high speed LAN
network. In contrast to shared memory systems that
are less scalable and have to be specially
manufactured, distributed memory systems are very
scalable and are also cheaper (because they can use
standard computers connected with a standard
network technology).

In distributed memory systems there are numerous
possibilities to connect nodes in different topologies.
Also, nodes can be in the peer-to-peer relation or can
have same hierarchy or master-slave relation.

Our model of parallelization is based on MPI
technology that is designed for distributed memory
systems (any topology), but can also be used in shared
memory systems. It can also be combined with
massive parallelism provided by GPU architecture
[11]. Although simple, a master-slave model, it is
suitable for very wide set of practical problems. In the
master-slave relation one node – the master is
coordinating node and all the others are slaves – the
nodes that do parallel calculations and report their
results to the master node.
In our model the essential module that is
automatically generated is implemented with
ExecuteInParallel() function. From a
programmer’s point of view our
ExecuteInParallel() function is a black box that
receives vector of input data and procedure to be used
on these data in parallel fashion. As an output,
ExecuteInParallel() gives a vector of results.
Abstract representation of such module is given in the
Figure 1.

Figure 1. A model of parallelization

To gain maximal speedup it is the best to use all
available nodes in the system. One node should be
dedicated to a master process, and the rest k nodes
should be assigned to k slave processes. If number of
subtasks provided by a programmer are greater than a
number of slave processes then some nodes will have
to do more than one task. The tasks are scheduled in
round robin fashion, so the slave process number i
should execute tasks i, i + k, i + 2k, i + 3k, … After
the master process receives the results from all
subtasks, it provides a vector of results to a
programmer as an output (Figure 1).

4 Case Study

An aim of this work is to examine possibility of using
generative programming to hide the complexity of

MASTER

Results

S
L
A
V
E

...

S
L
A
V
E

S
L
A
V
E

S
L
A
V
E

Inputs Procedure

Central European Conference on Information and Intelligent Systems__Page 228 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

using a distributed system of processors to speed up
time demanding computations. As the first steps
toward this goal is to make a case study on a simple
example. Calculating transcendental number π on
arbitrary number of significant digits is possible by
calculating partial sum of series, where partial sum
can be conveniently defined by recurrent relation (1)

 (1)

The term an represents approximation of number π/4.
For a higher value of n the approximation of number
π is more accurate. The recurrence relation (1) can
easily be implemented in a programming language,
for example as in the Code 1.

Code 1 Simple sequential code in C/C++ language
for calculating number π
double PI(long N){
 double ai = 0, sign = 1, i;
 for (i = 1 ; i <= N ; i++){
 ai += sign / (2 * i - 1);
 sign *= -1;
 }
 return ai * 4;
}

The main problem with this procedure is that, in order
to achieve high precision, it is necessary to calculate
this term in a large number of iterations. Therefore, an
available time is limiting factor to achieve high
accuracy. To maintain code simple we use double
data type, but in general abstract data types that can
store number with arbitrary precision can be used.
The first step in writing a program that can execute
this calculation in parallel is to decompose an original
task of calculating π to a number of smaller tasks.
New tasks should be able to do parts of original task
in a way that their results can easily be combined into
final solution. This decomposition can be done in
many different ways so in our opinion it is most
suitable to leave this choice to a programmer.
A complete source code of our implementation is
shown in code 2. A code on the grey background
should be written directly by the programmer and all
the rest is automatically inserted by program
generator. In our case study we divided task in a way
that smaller task calculates partial sum only for
iterations from some subinterval.
As a language of implementation a C++ was chosen
since C & C++ are regularly used for high
performance computing. To maintain code more
compact an object-oriented programming model was
used in our implementation. A class of objects named
FractionOfPi contains starting and ending iteration
as well as resulting value for a fraction of π. Besides
constructor, it implements member function
perform() that calculates a fraction of π and stores it

to the partialSum, and the member function
result() that simply retrieves calculated value.
Programmer also needs to divide task of calculating π
into smaller tasks, and to call function
ExecuteInParallel(). All the work of calculating π
is done in parallel, using nodes of a distributed
system. At the end, the partial results are store in the
vector ps. If necessary a programmer can combine
provided results in the final result, in his case simply
by summing the fraction of π. The rest of the code,
with white background, deals with technical details to
provide parallel execution and necessary
communication and synchronization between nodes.
A MasterProces() function receives the results from
tasks executed on the other nodes and also provides
synchronization by suspending the execution of
master process until all scheduled tasks are finished.
Another function, SlaveProces() execute one or
more smaller tasks and, at the end of each task, send
the results to the master process. Generator also
inserts code that maintains data about distributed
system; at the beginning initializes and at the end
releases MPI resources.

5. Usage of generator

The SCT generator model defines the source code
generator from three kinds of elements: Specification
(S), Configuration (C) and Templates (T). All three
model elements together make the SCT frame (Figure
1). The Specification contains features of generated
application in a form of attribute-value pairs. The
Template contains source code in a target
programming language together with connections
(replacing marks for insertion of variable code parts).
The Configuration defines the connection rules
between specification and template.
A starting SCT frame (Figure 2) contains the whole
specification, the whole configuration, but only the
base template from the set of all templates. Other SCT
frames are produced dynamically, one SCT frame for
each connection in upper template. SCT generator
model is generator model based on dynamic frames,
unlike some other frames-based generator models,
like XVCL [12]. Generator works as a variation
mechanism. It propagates the features specified in
Specification on a set of program fragments, named as
Templates. The connection rules are determined by
Configuration.

Central European Conference on Information and Intelligent Systems__Page 229 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

Code 2 A distributed implementation for calculating the number π in C++ with MPI
#include"mpi.h"
#include<vector>
#define PARTIALPIMESSAGE 531

struct MPI_related_data{
 int thisProcesID;
 int NumberOfProcesses;
} mpi_data;

class FractionOfPi{
 long long start, stop;
 double partialSum;
public:
 FractionOfPi(long long _first, long long _last):start(_first),stop(_last){}
 void perform(void);
 void result(double &sum) {sum=partialSum;}
};

void FractionOfPi::perform(void){
 double ai = 0, sign = (start%2==0)? -1 : 1;

 for (long long i = start ; i <= stop ; i++){
 ai += sign / (2 * i - 1);
 sign *= -1;
 }
 partialSum=ai * 4;
}

// #class#

void MasterProces(std::vector<double> & output){
 MPI_Status stat;
 int NumberOfSlaves = mpi_data.NumberOfProcesses - 1;
 for(int procNum = 1; procNum < mpi_data.NumberOfProcesses; procNum++)
 for(size_t i = procNum; i <= output.size(); i += NumberOfSlaves)
 MPI_Recv(&output.at(i-1), 1, MPI_DOUBLE, procNum, PARTIALPIMESSAGE, MPI_COMM_WORLD, &stat);
}
void SlaveProces(std::vector<FractionOfPi> & input){
 double r;
 int NumberOfSlaves=mpi_data.NumberOfProcesses-1;
 for(size_t i=mpi_data.thisProcesID; I <= input.size(); i += NumberOfSlaves){
 input.at(i-1).perform();
 input.at(i-1).result(r);
 MPI_Ssend(&r, 1, MPI_DOUBLE, 0, PARTIALPIMESSAGE, MPI_COMM_WORLD);
 }
}
void ExecuteInParallel(std::vector<FractionOfPi> & input, std::vector<double> & output){
 if(mpi_data.thisProcesID==0){
 output.resize(input.size());
 MasterProces(output);
 }
 else SlaveProces(input);
}
#include<iostream>
using namespace std;
int main(int argc, char **argv){
 atexit((void (*)())MPI_Finalize);
 if(MPI_Init(&argc,&argv)!=MPI_SUCCESS) exit(1);
 if(MPI_Comm_size(MPI_COMM_WORLD,&mpi_data.NumberOfProcesses)!=MPI_SUCCESS) exit(2);
 if(MPI_Comm_rank(MPI_COMM_WORLD,&mpi_data.thisProcesID)!=MPI_SUCCESS) exit(3);
 vector<FractionOfPi> pp;
 vector<double> results;
 pp.push_back(FractionOfPi(1,100000000)); // #interval# -> 1,100000000
 pp.push_back(FractionOfPi(100000001,200000000));// #interval# -> 100000001,200000000
 pp.push_back(FractionOfPi(200000001,300000000));// #interval# -> 200000001,300000000
 pp.push_back(FractionOfPi(300000001,400000000));// #interval# -> 300000001,400000000
 ExecuteInParallel(pp, results);
 if(mpi_data.thisProcesID==0){ // this block of code is executed only by master process
 double totalsum=0.0;
 for(size_t i=0; I < results.size(); i++) totalsum += results.at(i);
 cout<<"PI = "<<totalsum<<endl;
}// end of block executed only by master process
return 0;
}

Central European Conference on Information and Intelligent Systems__Page 230 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

S
Specification
(attribute-value

pairs)

C
Configuration
(connection,

attribute, template
triplet)

T
Template

(source code with
connections)

S C T S C T

#conn1#

#conn N
#.

.

starting
SCT
frame

dynamic
generated
SCT frames

Figure 2. SCT Frame

The Specification consists from attribute-values pairs
and for the given example could look as follows:

OUTPUT:out1

out1:output/parallel.cpp

class:FractionOfPi // class name
tasks:4 // number of tasks
//intervals:
interval:1,100000000
interval:100000001,200000000
interval:200000001,300000000
interval:300000001,400000000

There is one type of output specified, out1, and one
output file to be generated, output/parallel.cpp . The
output type is connected to appropriate top-level
template, which is defined in Configuration as #1#.
The Configuration connects attributes to links
(replacing marks) that are used in Templates:

//main template
#1#,,main.template

//simple connections:
#class_name#,class
#interval#,interval

// using subordinated template:
#class#,class,class.template

 . . .

Templates and their connections could be easily
represent by Configuration diagram [1], as shown in
Figure 3. The Main template contains the basic
structure of the code to be generated, including the
majority of the parallel resources. Triangles represent
replacing marks i.e. parts of the code to be defined
during the generation process. Rounded rectangles
represent values from Specification.
This architecture of generator offers a lot of flexibility
into design of parallel systems. All three model
elements (Specification, Configuration and
Templates) could be easily extended enabling
adaptation of generator system to the needs of parallel
processing.

Main

main.template
#class#

class

Class

class.template

#class_name#

class

.

Figure 3. Configuration diagram of the example

6 Conclusion

Our research shows that using generative
programming can hide technical peculiarities and
complexity from programmer and yet provide it with
ability to use distributed system to speed up
computationally demanding calculations. By
employing distributed system this method has very
high scalability.
Although, this model is developed on a simple case
study it seems general enough to handle a whole class
of practical problems. In future work we are planning
to extend our model so it can handle more general
cases and possibly to offer some alternative modes
and network topologies through our program
generator.

References

[1] Radošević D., Magdalenić I., “Source Code

Generator Based on Dynamic Frames”, Journal
of Information and Organizational Sciences, vol.
35, no. 2, pp. 73–91, 2011.

[2] Griss M. L. Product line architectures. In G. T.
Heineman, & W. T. Councill (Eds.), Component-
based software engineering: Putting the pieces
together (pp. 405-420). Boston: Addison-Wesley.

[3] Grigorenko P., Saabas A., Tyugu E. Visual Tool
for Generative Programming. Proc. of the Joint
10th European Software Engineering
Conference (ESEC) and the 13th ACM
SIGSOFT Symposium on the Foundations of
Software Engineering (FSE-13). ACM Publ.,
pp. 249–252, 2005.

[4] Tolvanen J.P., Rossi M. Metaedit+: Defining and
using domain-specific modeling languages and
code generators. In OOPSLA 2003
demonstration, 2003.

[5] Ekanayake J., Qiu X., Gunarathne T., Beason S.,
Fox G. High Performance Parallel Computing
with Cloud and Cloud Technologies. Cloud

Central European Conference on Information and Intelligent Systems__Page 231 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

Computing and Software Services: Theory and
Techniques, CRC Press (Taylor and Francis), pp.
1-39, 2010.

 [6] M. Waintraub, R. Schirru, C.M.N.A. Pereira:
Multiprocessor modeling of parallel Particle
Swarm Optimization applied to nuclear
engineering problems. Progress in Nuclear
Energy, 51(6–7): 680-688, 2009.[8] M.
Pedemonte, S. Nesmachnow, H. Cancela: A
survey on parallel ant colony optimization.
Applied Soft Computing, 11(8): 5181-5197, 2011.

[7] O. Nesterov: A simple parallelization technique
with MPI for ocean circulation models. Journal
of Parallel and Distributed Computing, 70(1):
35-44, 2010.

[8] M. Chau, D. El Baz, R. Guivarch, P. Spiteri: MPI
implementation of parallel subdomain methods
for linear and nonlinear convection–diffusion
problems. Journal of Parallel and Distributed
Computing, 67(5): 581-591, 2007.

[9] J. Zhao: IB: A Monte Carlo simulation tool for
neutron scattering instrument design under PVM
and MPI. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated
Equipment, 659(1): 434-441, 2011.

[10] D. Komatitsch, G. Erlebacher, D. Göddeke, D.
Michéa: High-order finite-element seismic wave
propagation modeling with MPI on a large GPU
cluster. Journal of Computational Physics,
229(20): 7692-7714, 2010.

[11] C. S. Ierotheou, S. P. Johnson, M. Cross, P. F.
Leggett: Computer Aided Parallelisation Tools
(CAPTools) - Conceptual Overview and
Performance on the Parallelisation of Structured
Mesh Codes. Parallel Computing, 22(2): 163-
195, 1996.

[12] Zhang H., Jarzabek S., “XVCL: a mechanism for
handling variants in software product lines”,
Science of Computer Programming, 53(3): 381-
407, 2004.

Central European Conference on Information and Intelligent Systems__Page 232 of 493

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 19-21, 2012

