
Towards the semantics of recursive procedures in categorical
terms

William Steingartner, Valerie Novitzká
Faculty of Electrical Engineering and Informatics

Technical University of Košice
Letná 9, 04200 Košice, Slovakia

{william.steingartner, valerie.novitzka}@tuke.sk

Abstract. Semantics is concerned with the interpre-
tation of programs written in some programming lan-
guages. The purpose of categorical semantics is to
model how the computation is performed in categori-
cal terms. Categories are mathematical structures with
great illustrative power enabling to model also pro-
cesses or computations. In this paper we extend our
categorical semantics of simple imperative language
J ane to named blocks - procedures. Semantics of
procedures we define as a collection of categories in-
terconnected by functors. Our approach enables nested
declarations, repeated calls with different arguments
and recursive calls without construction of the fixed
point known from denotational approach. Such model
allows to illustrate and accentuate the dynamics of cat-
egorical semantics.
Keywords. Category theory, imperative language, pro-
cedure, recursion, semantics

1 Introduction
Definition of formal semantics of programs belongs
to important methods in informatics providing exact
and unambiguous meaning of programs written in pro-
gramming languages of various paradigms. There are
several well-known methods, e.g. denotational seman-
tics, operational semantics, action semantics, game se-
mantics, etc. suitable for different purposes and wide-
spreadly used in the community of programmers. Cat-
egorical semantics belongs among newer methods that
use mathematical structures called categories as mod-
els. There are many publications dealing with categor-
ical semantics for functional programming languages,
e.g. (Eades, 2012; Jeltsch, 2014) based on type theory
modeled by categories of types. But only a few pa-
pers concern with imperative paradigm, e.g. (Todoran,
2014).

Therefore our research is concerned on how to define
categorical semantics for imperative programming lan-
guages. We presented categorical semantics of simple
imperative language J ane which contains five tradi-
tional Dijkstra’s constructs, user input, unnamed block
and variable declarations in (Steingartner & Novitzká,

2015a). In this approach, the semantics of a program
was modeled as a path in category of states CState.
This path is a composition of morphisms in category
representing particular steps of computation.

Procedural abstraction allows the programmer to be
concerned mainly with the interface between the func-
tion (procedure) and what it computes, ignoring the de-
tails of how the computation is accomplished. A proce-
dure is an abstraction of a sequence of commands. The
procedure call is a reference to the abstraction. The
semantics of the procedure call is determined by the
semantics of the procedure body (Plotkin, 2004). For
many languages with non-recursive procedures, the se-
mantics may be viewed as simple textual substitution
(Novitzká & Slodičák, 2007; Solus, Ovseník, & Turán,
2015).

The first approach to categorical semantics of proce-
dures in language J ane we presented in (Steingartner
& Novitzká, 2015b). Here we defined semantics of
procedure execution in separate category which is in-
terconnected with the main category CState by two
functors - the first of them models procedure invoca-
tion, the second one ensures return from procedure.
This approach allows nested procedure declarations
and possibly repeated calls with different parameters
without recursion. The semantics of program with pro-
cedure invocations is then modeled as the collection of
interconnected categories.

We extend our approach in this paper with the se-
mantics of recursive procedures in categorical way. We
do not use fixed point approach known from denota-
tional semantics (Schmidt, 1997) for recursive proce-
dures. We model the semantics of recursive procedures
in very simple way - as a composition of appropriate
morphisms across the collection of categories. Each
unfolding of recursion is modeled in a separately con-
structed category for procedure, with possibly differ-
ent internal states. This approach is similar to the tech-
nique which is used by structural operational semantics
and it expresses the dynamics during the processing of
recursive procedures.

Central European Conference on Information and Intelligent Systems__Page 235 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

2 Basic notions
Category theory investigates the internal architecture
of mathematics (Brandenburg, 2016). More precisely,
category theory is the algebra of functions (Walters,
1992). A category is an abstract structure: a collection
of objects, together with a collection of arrows between
them. Precisely, a category C is mathematical structure
that consists of a set of objects, e.g. A,B, . . . and a set
of morphisms or arrows of the form f : A → B be-
tween them. Given any object A there is designated
identity morphism idA : A → A. Given morphisms
f : A→ B, g : B → C, there is designated composite
morphism g ◦ f : A→ C. Because the objects of cate-
gory can be arbitrary structures, categories are useful in
computer science (Barr & Wells, 2002, 1990; Slodičák,
2011), where we often use more complex structures not
expressible by sets. Morphisms between categories are
called functors, e.g. a functor F : C → D from a cat-
egory C into a category D is considered as a structure-
preserving mapping between categories.

3 States and their representation
A state is a basic concept in semantics of imperative
languages. It can be considered as an abstraction of
computer memory. We defined signature on the type of
states and its operations in (Steingartner & Novitzká,
2015a). Here we briefly recall basic definitions.

A state is defined as abstract data type. Its signature
ΣState contains four operation specification on states:

init :→ State
alloc : V ar, State→ State
get : V ar, State→ V alue
del : State→ State

where V alue and V ar stand for types of values and
variables, respectively. The operation init creates a
new state which is an initial state of a program. The
operation alloc reserves a new memory cell for a
variable in a given state and the nesting level. The
operation get returns a variable value in an actual state
and operation del deallocates all variables together
with their values on the highest nesting level.

States are assigned to their representation. We assign
to the type V alue the set of integer numbers together
with the undefined value ⊥:

Value = Z ∪ {⊥} . (1)

We assign to the type V ar a countable set Var of vari-
able names. Our representation of an element of type
State has to express a variable name and its value with
respect to actual nesting level. Let Level be a finite set
of nesting levels denoted by natural numbers l:

l ∈ Level, Level = N.

Level of declaration allows us to create variable envi-
ronment known from structural operational semantics
(Plotkin, 2004; Staton, 2008) and enables to distin-
guish local declarations from global ones.

We assign to the type State the set State of states.
Every state s ∈ State is represented as a function

s : Var× Level ⇀ Value, (2)

which is partially defined because a declaration does
not assign a value to the declared variable. We express
a state s as a sequence:

s = 〈((x, 1) , v1) , . . . , ((z, l) , vn)〉

of ordered triples

((x, l) , v) ,

where (x, l) is the declared variable x on the nesting
level l with actual (possibly undefined) value v. Se-
quence can be illustrated by a table with possibly un-
filled cells denoted by⊥ expressing an undefined value
which increases readability. We use tables for better il-
lustration of program execution in Section 6.

Now we define representations of operation specifi-
cations from the signature ΣState as follows. The op-
eration JinitK defined by

JinitK = s0 = 〈((⊥, 1) ,⊥)〉 (3)

merely creates the initial state s0 of a program, with
no declared variable. This operation is applied only
at the beginning of the main program. The operation
JallocK appends a new item to the sequence (creates a
new entry in the table of) s and is defined by

JallocK(x, s) = s � 〈((x, l) ,⊥)〉 , (4)

where ’�’ is concatenation operation. This operation
sets the actual nesting level to the declared variable.
Because of the undefined value of the declared vari-
able, the operation JallocK does not change the state.
The operation JgetK returns the value of a variable de-
clared on the highest nesting level and is defined by

JgetK(x, 〈. . . , ((x, li) , vi) , . . . , ((x, lk) , vk) , . . .〉)

= vk,
(5)

where li < lk, i < k for all i, from the definition of
state.

The operation JdelK deallocates (forgets) all vari-
ables declared on the highest nesting level lj :

JdelK(s � 〈((xi, lj) , vk) , . . . , ((xn, lj) , vm)〉) = s.
(6)

States defined above will be category objects in our
model. We also consider a special state

s⊥ = 〈((⊥,⊥) ,⊥)〉 (7)

expressing the undefined state.

Central European Conference on Information and Intelligent Systems__Page 236 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

4 Semantics of statements and
declarations

Here we briefly introduce the language J ane. This
language consists of traditional syntactic construc-
tions of imperative languages, namely arithmetic
and Boolean expressions, variable declarations and
statements. For this language the well-known syntactic
domains are introduced:

n ∈ Num - digit strings
x ∈ Var - variable names
e ∈ Aexpr - arithmetic expressions
b ∈ Bexpr - Boolean expressions
S ∈ Statm - statements
D ∈ Decl - declarations

Five Dijkstra’s elementary statements that are ele-
ments of syntactic domain Statm, S ∈ Statm, are
considered: assignment, empty statement, sequence of
statements, conditional statement and cycle statement.
Moreover, we add into syntax a statement for user input
and block statement:

S ::= x := e | skip | S;S | if b then S else S |
while b do S | input x | begin D;S end

Declarations of variables are defined as follows:

D ::= var x;D | ε
where ε stands for an empty sequence of declarations.

We defined states as sequences of tuples. Now we
construct a model of language J ane as a category of
states, CState. In this category we consider:

- states as category objects; and

- functions on states, possibly partially defined, as
category morphisms.

Statements are executed in the order, as they are writ-
ten in the program text. The execution of statements we
define as functions from state to state. Statements exe-
cute program actions, i.e. they get values from the ac-
tual state and provide new values. A state is changed if
a value of the allocated variable is modified. We model
the change of state by functions between states.

Let S be a statement. Its semantics is a function:

JSK : s→ s′, (8)

where s and s′ are states. This function can be par-
tially defined in the case the resulting state s′ becomes
undefined, s′ = s⊥.

The categorical semantics of statements in J ane is
defined as follows:

Jx := eKs =


s [((x, l), v) 7→ ((x, l), JeKs)] ,

for ((x, l), v) ∈ s;

s⊥
otherwise.

(9)

JskipKs = s. (10)

JS1;S2Ks = (JS2K ◦ JS1K) s = JS2K (JS1Ks) . (11)

Jif b then S1 else S2Ks =


JS1Ks,

if JbKs = true;

JS2Ks
otherwise.

(12)

Jwhile b do SKs =

Jif b then (S; while b do S) else skipKs
(13)

[[input x]]s =


s [((x, l), v) 7→ ((x, l), JxKs)] ,

for ((x, l) , v) ∈ s

s⊥,
otherwise.

(14)

[[begin D;S end]]s =

[[del]] ◦ [[S]] ◦ [[D]](s � 〈((begin, l + 1) ,⊥)〉).
(15)

A proof of semantic equivalence of the prefix logic
cycle can be found in (Nielson & Nielson, 1992).
Therefore, the semantics of the cycle statement is de-
fined as a (possibly infinite) composition of functions.
Generally, whenever during the program execution a
state s′ becomes undefined, i.e. s′ = s⊥, then the ex-
ecution of the whole sequence of statements provides
undefined state:

JSKs⊥ = s⊥. (16)

Each variable occurring in a Jane program has to
be declared. Declarations are elaborated, i.e. a memo-
ry cell is allocated and named by a declared variable.
Therefore, elaboration of a declaration

var x

is represented as a function on a state s:

[[var x]] : s→ s (17)

for a given state s and defined by

[[var x]]s = [[alloc]](x, s). (18)

A sequence of declarations is represented as a compo-
sition of corresponding functions:

[[var x;D]]s = [[D]] ◦ JallocK(x, s). (19)

Central European Conference on Information and Intelligent Systems__Page 237 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

5 Semantics of procedures
In this section we extend our approach for the language
with procedures declarations and procedures calls. A
procedure is named block which can be called (possi-
bly) more times by its name from the main program or
from another procedure. Special case is recursive pro-
cedure which calls itself with possibly changed (usu-
ally decremented) input argument until the closing con-
dition is false.

A procedure declaration consists of its name (pos-
sibly with parameters), the local declarations and the
sequence of statements. Within calling a procedure,
its parameters are replaced by arguments and body of
a procedure is assigned to its name. In this paper we
consider for simplification only one parameter.

A new syntactic domain ProcDecl for sequences
of procedure declarations is introduced. A syntax of
procedures is as follows:

Dp ::= proc p(t) Sp; return;Dp | ε.

Procedure declarations contain procedure name p, its
parameter t and a sequence of statements Sp. Next we
extend the syntax of J ane as follows:

S ::= . . . | begin D;Dp;S end | call p(e).

The semantics of program containing procedure(s)
is modeled as a collection of categories of states. One
category denoted CState constructed above serves for a
main program. A declaration of procedure p causes the
construction of the new category Cp similarly as the
main category. Constructing a new category of states
for each declared procedure then enables multiple and
nested calling of procedures.

Consider a category Cp constructed for the proce-
dure p. This category has its initial state denoted
sp0 = 〈((⊥,⊥),⊥)〉. A level of declaration in an ini-
tial state of the procedure is undefined and is replaced
by actual value when the procedure is called and an ap-
propriate category is constructed.

The connection between constructed categories of
states can be carried out by functors. We construct two
functors:

C : Statm→ CState → Cp

R : Statm→ Cp → CState

The functor C serves for calling a procedure p.
If the statement S in CState is a call of the procedure

p with argument e, call p(e), in a state s, then the
functor C has to:

- update the initial state sp0 in Cp by the state s in
CState;

- append a new entry in sp0 for parameter t;

- increment the nesting level;

- pass the value [[e]]s of the argument to the new
entry for parameter t.

If the statement S is other than a call of a procedure,
then the image of a state s is undefined state sp⊥ =
〈((⊥,⊥),⊥)〉 , the terminal object in Cp. Formally,
the functor C works on objects as follows:

C(S)s =

=


sp0[〈((⊥, l + 1),⊥)〉 7→ s � 〈((t, l + 1), [[e]]s)〉],

if S = call p(e)

sp⊥,
otherwise.

(20)
Notation (20) denotes replacing the original state sp0 by
a new sequence of entries from the calling program.
For any morphism s → s′ in CState its image by C is
defined as follows to satisfy functoriality of C:

C(S)(s→ s′) =


sp0 → sp⊥, if S = call p(e)

idp
sp⊥

, otherwise

Executing a procedure p can be modeled in the cor-
responding category Cp of states as a finite path of
states. The final state is denoted by spfin and it is in-
dicated by return.

The rôle of functor R is:

- to forget entries in spfin of locally declared vari-
ables; and

- to pass the possibly changed values of global vari-
ables to the category CState;

because finishing the procedure body will cause forget-
ting the values of locally declared variables and decre-
mentation of the nesting level. Therefore, the formal
definition of functor R is simpler:

R(S)sp =


[[del]](sp), if sp = spfin

s⊥, otherwise

R(S)(sp → s′p) =

 s⊥ → s′, if S = return

ids⊥ , otherwise
(21)

The semantics of the statement call p(e) is then de-
fined by the commutative diagram as a composition

[[call p(e)]] = R ◦ ([[Sp]] ◦ C(call p(e))).

Now we extend this way of defining the categori-
cal semantics of procedures introduced in (Steingartner
& Novitzká, 2015b) and we define the semantics of
recursive procedures. Roughly speaking, a recursive
procedure is a procedure that makes a call to itself.
To prevent infinite recursion, we usually need a condi-
tional statement of some sort where one branch makes

Central European Conference on Information and Intelligent Systems__Page 238 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

a recursive call, and the other branch does not. The
branch without a recursive call is usually the base case.
Base cases do not make recursive calls to the function.
When a recursive call is made, technically the proce-
dure clones itself, making new copies of the code, the
local variables (with their initial values) and the argu-
ments. Program control jumps to the function where
the function’s code is being executed. These steps are
being repeated until the base case is reached. After the
computation inside the base case the result is copied
into a return value. When the procedure returns back,
that clone goes away, but the previous ones are still
there, and know what to execute next because their cur-
rent position in the code was saved. The stack is re-
wound to its previous position and control jumps back
to where the function was called until the last proce-
dure call is not finished.

We will follow this idea and we define categorical
semantics of recursive procedures. We use the follow-
ing notation:

- Cp|j is the jth category for procedure p, con-
structed when the procedure is called jth time;

- spi|j is the state with index i during the program
execution enclosed in category of states for pro-
cedure p with an index j;

- spfin|j is the final state in the category for proce-
dure p with an index j.

The semantics of recursive procedure with one pa-
rameter which calls only itself is as follows:

[[call p(e)]] =
[
Ri(return) ◦ [[S′′]]

]1
i=n−1

◦ (Rn (return) ◦ [[Sp]]) ◦

◦
[
Ci(call p(ei)) ◦ [[S′]]

]n
i=2

◦ C1 (call p(e1))
(22)

In the formula (22), upper index at functors C and
R means the order of application. At functor C the
index of order is increasing, at functor R is decreas-
ing. Statement Sp represents the whole body of pro-
cedure, statement S′ stands for some subsequence of
statements that is executed when the procedure starts
until the new call is invoked, and the statement S′′ rep-
resents the subsequence that is executed after returning
the value of previous call to the end of procedure.

This approach does not use the philosophy of con-
structing the fixed point of recursive function. It shows
the dynamics of computation in the similar way as the
structural operational semantics (Mosses, 2004).

6 Example
This approach we show on a simple example. We con-
sider program for factorial using recursion. The code

sfact0|1
y 1 1

var level value

begin 2 ⊥
t 2 4

z 2 ⊥

Figure 1: An initial state in the first call of fact

for program is as follows:

1 var y ;
2 y : = 1 ;
3 c a l l f a c t (4) ;
4

5 procedure f a c t (t)
6 begin
7 var z ;
8 z := t ;
9 i f not (t =1) then

10 c a l l f a c t (t −1) ;
11 e l s e s k i p ;
12 y := y∗z ;
13 r e t u r n ;
14 end ;

Listing 1: Example of the factorial computation

The code in Listing 1 demonstrates one of the tra-
ditional ways of factorial calculation using recursion.
The procedure passes the parameter with call-by-value
method. Inside the procedure one local variable is de-
clared.

We start with the description of the program. On the
line 1, a variable y is declared. This variable is con-
sidered as global. During the program execution, the
particular results are stored in it. After the outermost
procedure call is finished, the variable y contains the re-
sulting value of factorial calculation. On the next line,
the variable y is initialized to a starting value 1. On the
line 3, the procedure fact is called with the fixed value
of argument, the value 4.

Calling of a procedure is expressed as follows. The
state s1 in CState is copied to the state sfact0|1 in the new

category Cfact|1. That means that an initial state sfact0|1
is created (Fig. 1) in category Cfact|1. This new state
contains a fictive entry in the table which means that
all local declarations are elaborated on the new level of
declarations, here l = 2.
Inside the procedure, on the line 7 the new local vari-
able z is declared and declaration is elaborated on the
level l = 2. Assignment statement z := t on the line
8 is executed with the actual value of parameter t, here
t = 4 and the new state becomes (Fig. 2).
The next statement is conditional statement on the lines
9 and 10. Evaluation of the Boolean expression re-
sults into value true and program continues with the
next procedure call: the command to be executed is

Central European Conference on Information and Intelligent Systems__Page 239 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

sfact0|1
y 1 1

var level value

begin 2 ⊥

z 2 ⊥

y 1 1

var level value

begin 2 ⊥

z 2 4

sfact1|1

t 2 4 t 2 4

Figure 2: States in procedure after declaration and as-
signment of the parameter value

sfact0|4
y 1 1

var level value

begin 2 ⊥

z 2 4

sfactfin|4
y 1 1

var level value

begin 2 ⊥

z 2 4

begin 3 ⊥

z 3 3

begin 4 ⊥

z 4 2

begin 5 ⊥

z 5 ⊥

begin 3 ⊥

z 3 3

begin 4 ⊥

z 4 2

begin 5 ⊥

z 5 1

t 5 1 t 5 1

t 2 4 t 2 4

t 3 3 t 3 3

t 4 2 t 4 2

Figure 3: States in the innermost procedure call: initial
and final

call fact(t− 1). So the new category Cfact|2 for the
next procedure call is created. Inside this new category
its initial state with the new level of declaration (l = 3)
is created.

In our case, the steps on lines 7-9 repeat two more
times with two new categories for particular procedure
call: Cfact|3 and Cfact|4. In the last category, Cfact|4,
the Boolean expression in conditional statement on the
line 9 has resulting value false and the statement skip
is executed. In this point no new procedure call is exe-
cuted and program reached the "bottom" of recursion.
The next statement after the conditional one is an as-
signment y := y ∗ z on the line 11. The state sfact0|4 af-
ter declaration of variable z is in Fig. 3 on the left hand
side. The state sfactfin|4 is the final state of the innermost
procedure call and is depicted on the right hand side.
It is the state before executing the keyword return,
i.e. before applying the functor R which sends the fi-
nal state of procedure into the category from which the
procedure was called.
After mapping the state sfactfin|4 into the previous cat-
egory Cfact|3 all declarations elaborated in Cfact|4
are forgotten (deleted) and global variable y is actual-
ized. Similarly, those steps repeat in categories Cfact|3,

Cfact|2 and Cfact|1 as follows:

- in Cfact|3, the statement y := y ∗ z by taking an
actual value 2 stored in z declared on level l = 4
sends (maps) the state sfact2|3 into sfactfin|3 and vari-
able y is actualized to value 2 (Fig. 4, the left hand
side);

- in Cfact|2, also the statement y := y ∗ z taking an
actual value 3 stored in z declared on level l = 3
sends the state sfact2|2 into sfactfin|2 and variable y is
actualized to new value 6 (Fig 4, right hand side);

sfactfin|3
y 1 2

var level value

begin 2 ⊥

z 2 4

sfactfin|2
y 1 6

var level value

begin 2 ⊥

z 2 4

begin 3 ⊥

z 3 3

begin 4 ⊥

z 4 2

begin 3 ⊥

z 3 3

t 2 4 t 2 4

t 3 3 t 3 3

t 4 2

Figure 4: Final states in the third and the second pro-
cedure calls before return

- in Cfact|1 the statement y := y ∗ z is executed for
the last time in program, it takes an actual value 4
in variable z declared on level l = 2 and variable
y is actualized to new value 24 (Fig 5, left hand
side);

- finally, the resulting state sfactfin|1 is sent to its im-
age sfin in the main category Cstate by functor R
(Fig 5, right hand side).

sfactfin|1
y 1 24

var level value

begin 2 ⊥

z 2 4

sfin

y 1 24

var level value

t 2 4

Figure 5: Final states of the first procedure call and of
the main program

The final result is stored in the resulting state sfin. The
value 24 stored in variable y is a result of 4 factorial.

Central European Conference on Information and Intelligent Systems__Page 240 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

The composition of all morphisms that are parts of
procedure call is expressed as follows:

[[call fact(e1)]] =

=
[
Ri(return) ◦ [[y := y ∗ z]]

]1
i=3

◦
(
R4 (return) ◦ [[y := y ∗ z]] ◦ [[skip]]◦

◦[[z := 1]] ◦ [[var z]])

◦
[
Ci(call fact(ei)) ◦ [[z := 1]] ◦ [[var z]]

]4
i=2

◦ C1 (call fact(e1))

where values of particular expressions ei are:

e1 = 4, e2 = 3, e3 = 2, e4 = 1.

The procedure fact is called four times, and index val-
ues run from i = 1 to i = 4. Here, as said before, in-
dices denote the order of applying the functors C and
R. The semantics of the program from Listing 1 is ex-
pressed as a path in Fig. 6 (see the last page).

7 Benefits and open problems

In this paper we present a new approach of defining
categorical semantics of procedural languages. We fol-
low our results introduced in (Steingartner & Novitzká,
2015a) and we extend the language J ane with proce-
dures possibly with parameters. Usage of categories as
models has several advantages. Categories are math-
ematical structures with exactly defined and proved
properties that are useful for semantic definitions. Cat-
egory of states used in our approach consists of sets as
category objects and functions between them as cat-
egory morphisms. Such category has useful proper-
ties important for us, e.g. initial and terminal objects,
exponentials, commutative diagrams, global variables
etc. In the case of procedures we construct a collec-
tion of categories of states for the main program and
each declared procedure. The connection between cat-
egories is ensured by special morphisms, functors, for
procedure call and return. Our approach permits re-
peated call, nesting of procedures and handling recur-
sive procedures. After all, categories afford opportu-
nity for graphical representation of program semantics
that is more illustrative and better understandable as
pure mathematical inscription.

Our approach can be useful for several groups of
users. First, categories are very popular in modeling
processes in computer science and we provide a new
area of their usefulness. Moreover, categorical model
with its mathematical properties either ensures reliabi-
lity of a drafted program or shows possible errors be-
fore its execution on a computer. Last but not least,

graphical character of categories enables to use our ap-
proach for practical programmers and also for educa-
tional purposes because of its simplicity and visualiza-
tion.

Admittedly, there are open problems not yet solved
in this paper that are the subjects of our further re-
search. Now, we can define categorical semantics
for traditional procedural languages. We assume that
our model is not proper for languages with non-
determinism, where game semantics is more suitable.
To model parallelism a new environment for processes
should be introduced using functors for synchroniza-
tion purposes. Possible extension can be to define cate-
gorical semantics of objects and classes used in object-
oriented paradigm. We plan to proceed our research
with defining categorical semantics for component-
based program systems. These mentioned extensions
will coerce new functors for defining cooperation be-
tween objects and for instantiations of classes. In the
case of component-based program systems we need to
define functors for calling components (with necessary
agreements and dependencies) but each component as
a closed system works until its final state.

8 Conclusion

We presented categorical semantics of procedures in
this paper. We extended our language J ane with
named blocks, procedures with parameters. A decla-
ration of a procedure causes construction of a new cat-
egory of states. Calling of procedures is realized by a
pair of functors: C for calling and R for return. A pro-
gram with procedures is represented as a collection of
categories of states. Our approach enables also mul-
tiple calling of a procedure. In the case of recursive
procedures, we decided to construct a new category of
states for each call to illustrate unfolding of recursion.
It seems to be more illustrative than using of fixed point
operator in denotational method. Creating a chain of
categories of states for recursive calling is near to the o-
perational semantics. Hence the semantics of the whole
program is expressed as one compound path. Moreover
the recursive procedure is expressed also as a sequence
of morphisms until the base case is reached without
constructing the fixed point known from denotational
semantics. We could say that our approach is highly
illustrative and good understandable, suitable also for
education and teaching some formal methods. Our next
objective is to define category as transition system and
to construct coalgebra with an appropriate endofunc-
tor over the category of states for our language which
will enable to model observable behavior of executed
programs.

Central European Conference on Information and Intelligent Systems__Page 241 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

Acknowledgments
This work has been supported by Grant No. FEI-2015-
18: Coalgebraic models of component systems.

References
Barr, M., & Wells, C. (1990). Category theory for

computing science. Prentice Hall International.
Barr, M., & Wells, C. (2002). Toposes, triples and

theories. Springer-Verlag.
Brandenburg, M. (2016). Einführung in die Kategori-

entheorie. Springer Spektrum.
Eades, H. (2012). The semantic analysis of advanced

programming languages. Unpublished doctoral
dissertation, University of Iowa.

Jeltsch, W. (2014). Categorical Semantics for
Functional Reactive Programming with Tempo-
ral Recursion and Corecursion. In Proceed-
ings 5th Workshop on Mathematically Structured
Functional Programming, MSFP@ETAPS 2014,
Grenoble, France, 12 April 2014 (pp. 127–142).

Mosses, P. D. (2004). Modular structural operational
semantics.

Nielson, H. R., & Nielson, F. (1992). Semantics with
applications: A formal introduction. New York,
NY, USA: John Wiley & Sons, Inc.

Novitzká, V., & Slodičák, V. (2007). On apply-
ing stochastic problems in higher-order theories.
Acta Electrotechnica et Informatica, 7(3), pp.
58–62.

Plotkin, G. D. (2004). The origins of structural op-
erational semantics. The Journal of Logic and
Algebraic Programming, 60-61, pp. 3–15.

Schmidt, D. (1997). Denotational semantics. Method-
ology for language development. USA: Allyn
and Bacon.

Slodičák, V. (2011). Some useful structures for cat-
egorical approach for program behavior. Jour-
nal of Information and Organizational Sciences,
35(1), pp. 93–103.

Solus, D., Ovseník, L., & Turán, J. (2015). Inventory
system of vertical traffic signs. In Radioelektron-
ika (RADIOELEKTRONIKA), 2015 25th Inter-
national Conference (pp. 121–124). IEEE.

Staton, S. (2008). General structural operational se-
mantics through categorical logic. In Logic in
Computer Science, 2008. LICS’08. 23rd Annual
IEEE Symposium on (pp. 166–177). IEEE Com-
puter Society Press.

Steingartner, W., & Novitzká, V. (2015a). A new ap-
proach to operational semantics by categories. In
Proceedings of the 26th Central European Con-
ference on Information and Intelligent Systems,
CECIIS 2015 (pp. 247–254). Varaždin, Univer-
sity of Zagreb.

Steingartner, W., & Novitzká, V. (2015b). A new ap-
proach to semantics of procedures in categorical

terms. In 2015 IEEE 13th International Scien-
tific Conference on Informatics, INFORMATICS
2015 (pp. 252–257). Poprad, Slovakia.

Todoran, E. N. (2014). Continuation semantics for
maximal parallelism and imperative program-
ming. Automation, Computers, Applied Math-
ematics, 23(1), pp. 29–35.

Walters, R. (1992). Categories and computer science.
New York, USA: Cambridge University Press.

Central European Conference on Information and Intelligent Systems__Page 242 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

s0

Jvar
yK

s1 s2

Jy := 1K Jcall fact(4)K

CState

sfact0|1 sfact1|1

sfact2|1

sfactfin|1

Jvar
zK

Jz := 4K

Jca
ll

fa
ct(
3)

K

Jy := y ∗ zK

Cfact|1

sfact0|2 sfact1|2

sfact2|2

sfactfin|2

Jvar
zK

Jz := 3K

Jca
ll

fa
ct(
2)

K

Jy := y ∗ zK

Cfact|2

sfact0|3 sfact1|3

sfact2|3

sfactfin|3

Jvar
zK

Jz := 2K

Jca
ll

fa
ct(
1)

K

Jy := y ∗ zK

Cfact|3

sfact0|4 sfact1|4 sfactfin|4

Jvar
zK

Jz := 1K

Jy := y ∗ zK

Cfact|4

JskipK

C

C

C

C

R

R

R

R

Figure 6: Collection of categories for factorial computation

Central European Conference on Information and Intelligent Systems__Page 243 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

