
Integrity constraints in graph databases – implementation
challenges

Martina Šestak, Kornelije Rabuzin, Matija Novak

Faculty of Organization and Informatics
University of Zagreb
Pavlinska 2, Varaždin

{msestak2, kornelije.rabuzin, matija.novak}@foi.hr

Abstract. Graph databases are becoming more and
more popular as they represent a good alternative to
relational databases for some problem scenarios.
Searching a graph is sometimes very convenient,
unlike writing complex SQL queries that require a
table to be joined to itself several times. However,
graph databases do not support all the constraints that
are familiar and used in relational databases. In this
paper, we discuss integrity constraints in graph
databases and technical implementation issues that
prevent these constraints from being specified.

Keywords. Graph databases, Neo4j, Gremlin, integrity
constraints, UNIQUE

1 Introduction

Graph databases are becoming more and more popular
as they are constantly being developed and used in
many problem scenarios [Cheng et al., 2008]. Graph
databases store information in nodes and relationships
between nodes. The idea of storing data in nodes and
relationships is relatively new, although the graph
theory is quite old. Social network analysis,
recommendation systems and fraud detection represent
only some applications of graph databases, and in those
scenarios graph databases outperform relational
databases [Robinson et al., 2013]. An example graph
database is given in Fig. 1.

Figure 1. Restaurant recommendation graph database

[Eifrem, Rathle, 2013]

One thing that is still being developed for graph
databases is integrity constraint support.

Garbage In Garbage Out (GIGO) is a well-known
term that describes situations in which low quality data
is stored in a database, and results in the same output.
Integrity constraints can be defined as general
statements and rules that define the set of consistent
database states, changes of states or both [Codd, 1980].
Their purpose is to ensure that data that is to be entered
obeys certain rules and is valid, and that GIGO is
prevented.

When talking about database constraints, we must
first mention column data types, which are also
important because they can prevent certain anomalies.
For example, a string cannot be entered into a column
whose data type is set to date or into a column whose
data type is set to integer. So, proper selection of data
types is important. It is also important to specify the
right length for each column in order to prevent values
that are too long from being stored, etc. After the right
data type has been selected, integrity constraints can be
specified. By using the constraints, one can restrict
possible values that could be entered as column values.
For example, only numbers between 1 and 100 could
be entered in a field.

Once constraints are specified, the database system
has to ensure that all constraints are satisfied and none
are broken. Eventually, some constraints do not have
to be maintained within a transaction and it is possible
that some are broken, but when the transaction ends, all
constraints have to be satisfied [Ibrahim, 2010].

Although constraints are specified and data is
consistent, thereby satisfying the integrity
requirements, this does not have to mean that data is
correct. For example, let us assume that an order was
delivered on the 12th of June, but somebody entered
the 13th of June. Although both values are consistent
and can be stored in a field whose type is set to date,
one of them is not correct and is a result of a mistake.
So constraints will ensure that data is consistent, but
correctness cannot be ensured.

Central European Conference on Information and Intelligent Systems__Page 23 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

In this paper we discuss integrity constraints in
graph databases. First, we describe integrity constraints
and then we present which constraints are supported in
current graph query languages.

2 Integrity constraints in graph

databases

When talking about constraints, we distinguish:
• Column constraints
• Table constraints
• Database constraints

Column constraints are defined upon a column in a
table. Examples include:
• NOT NULL: prevents a NULL from being entered

into the column
• UNIQUE: ensures that a value is unique (or null, if

possible)
• CHECK: ensures that the value satisfies the

condition that is specified (for example, a value is
between certain values, etc.). In a sense, this
restricts the value of the attribute by allowing only
certain values to be entered.

• PRIMARY KEY: ensures that the value is NOT
NULL and UNIQUE

• REFERENCES: ensures that the value entered has
to appear as a primary key value of some other (or
the same) table

In some database management systems, like

PostgreSQL, one can also create a domain1 [The
PostgreSQL Global Development Group, 2016]:

CREATE DOMAIN name [AS] data_type
 [COLLATE collation]
 [DEFAULT expression]
 [constraint [...]]
Constraint can be:
[CONSTRAINT constraint_name]
{ NOT NULL | NULL | CHECK (expression) }

A domain is basically a combination of a data type

and a constraint. Once a domain is created, instead of a
data type, a domain is specified for a column and this
is sometimes very convenient.

Table constraints can be used as well because some
constraints cannot be expressed as column constraints.
Therefore, they are defined upon the table. For
example, if a table had a compound primary key
consisting of three columns, then one could not specify
the PRIMARY KEY column constraint in three
columns, as the PRIMARY KEY clause can appear
only once within the table definition. So some
constraints can only be expressed as table, and not for
columns.

1 https://www.postgresql.org/docs/9.6/static/sql-
createdomain.html

Triggers are very interesting as they could be used
to implement more complex constraints involving
more tables (database constraints)
[Decker&Martinenghi, 2009]. Basically, once an event
occurs (like INSERT or UPDATE), a function
(procedure) is activated and several different
statements can be executed as a reaction to the event.

The CREATE TRIGGER2 statement can look
different in other systems, but in PostgreSQL the
syntax is [The PostgreSQL Global Development
Group, 2016]:

CREATE [CONSTRAINT] TRIGGER name { BEFORE |
AFTER | INSTEAD OF } { event [OR ...] }
 ON table_name
 [FROM referenced_table_name]
 [NOT DEFERRABLE | [DEFERRABLE] [
INITIALLY IMMEDIATE | INITIALLY DEFERRED]]
 [FOR [EACH] { ROW | STATEMENT }]
 [WHEN (condition)]
 EXECUTE PROCEDURE function_name (
arguments)

Now that we know what integrity constraints are, let
us take a look at how they are implemented in graph
databases, and what is supported at this point in time.

Since graph databases are a relatively new category
of NoSQL databases, the data consistency and integrity
constraints area is still not developed in detail and
provides opportunities for further improvements and
studies. Some people even say that the reason for this
is the flexible and evolving schema supported by graph
databases, which makes integrity constraints
implementation more difficult.

[Angles&Gutierrez, 2008] identified several
examples of important integrity constraints in graph
database models:
• Schema-instance consistency

o Prevents incomplete or non-existent
information from being inserted into the
database.

o Implies that the instance should contain only
the entities and relations that were previously
defined in the schema. Thus, each entity can
have only those properties that were specified
for that entity type or a super-type in case of
inheritance.

• Data redundancy
o Decreases the amount of redundant

information stored in the database.
o Can be solved by introducing an operation

that groups entities on the basis of some of
their relations, i.e., creates a unique entity for
each equivalence class of duplicate entities.

• Identity integrity
o Each node in the database is a unique real

world entity and can be identified by either a

2 https://www.postgresql.org/docs/9.6/static/sql-
createtrigger.htm

Central European Conference on Information and Intelligent Systems__Page 24 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

value (e.g., its ID number) or the values of its
attributes.

o Similar to primary key constraint in relational
databases.

• Referential integrity
o Requires that only existing entities in the

database can be referenced.
o Similar to foreign key constraint in relational

databases.
• Functional dependencies

o Test if an entity determines the value of
another database entity.

In his other article, [Angles, 2012] considered some
additional integrity constraints such as types checking,
verifying uniqueness of properties or relations and
graph pattern constraints.

In the relational data model, we use tables and add
rows to tables. If a value for a column is not defined,
NULL should be used and stored as a cell value. If a
NOT NULL constraint is specified, then the value for
that column has to be specified and NULL cannot be
used. In graph databases, nodes and/or relationships do
not have to have the same number of attributes. So, if
a value is not known or defined, the attribute can be
skipped. But there is also the possibility to specify a
DEFAULT value for such an attribute as well, if it
makes sense in a given context.

3 Graph Database Query
Languages

There are two popular languages that are used for graph
databases: Cypher and Gremlin.

In the next section, we will describe constraints that
these languages support, though we can say that at this
time the support is minimal.

3.1 Cypher
Cypher is a declarative, SQL-like query language for
describing patterns in graphs using ASCII-art symbols
[Neo Technology, Inc., 2016A].

It consists of clauses, keywords and
expressions (predicates and functions), some of which
have the same name as in SQL. The main goal and
purpose of using Cypher is to be able to find a specific
graph pattern in a simple and effective way. Writing
Cypher queries is easy and intuitive, which is why
Cypher is suitable to be used by developers,
professionals and users with a basic set of database
knowledge.

Cypher clauses are grouped into several
categories (e.g., general clauses, reading clauses,
writing clauses, etc.). The CREATE clause is used to
insert data to the database. To create a new author with

his own properties in a database, the following Cypher
query would be executed:

CREATE (a:Author {Firstname: ‘Miroslav, Lastname:
‘Krleža})

Conversely, to retrieve all authors from that same
database, the Cypher query would have the following
syntax:

MATCH (a:Author) RETURN a

Cypher is the official query language of the most

popular graph DBMS, Neo4j.
In Neo4j, integrity constraints are created using the

CREATE CONSTRAINT clause and are dropped from
a database by using the DROP CONSTRAINT clause.

Neo4j enables users to define only unique property
constraints, which can be applied only to nodes. Note
that the official Cypher website mentions the property
existence constraint, but at the current time this
constraint cannot be created in a Neo4j database.

The unique property constraint is used to ensure
that all nodes with specific label have a unique value
of some property. For instance, to create a constraint
which ensures that the property “Name” of a node
labelled Genre has a unique value, the following
Cypher query must be executed:

CREATE CONSTRAINT ON (g:Genre) ASSERT g.Name IS
UNIQUE

If a user tries to enter data that violates the defined

integrity constraints, they will receive the
corresponding error message shown in Fig. 2.

Figure 2. Constraint violation error message

3.2 Gremlin
Gremlin is a graph traversal language developed by
Apache Tinkerpop. Gremlin is path-oriented, which
enables it to concisely express the graph traversal
process [Titan by Aurelius, 2016].

A Gremlin query is a chain of operations
and/or functions evaluated from left to right. Each of
these operations represents a step in the graph traversal
process.

Compared to Cypher, Gremlin doesn’t
provide support for any kind of integrity constraints,
which leaves a lot of room for improvement. This
research fits this space, as we show later on.

In the next section, we show how to support
integrity constraints in graph databases.

Central European Conference on Information and Intelligent Systems__Page 25 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

4 Implementation issues

In this section, we describe implementation issues
regarding the integrity constraint specification in graph
databases. There are basically two approaches for how
to implement constraints: integrated and layered. For
implementation purposes we have chosen the layered
approach, which means that constraints should be
defined within an additional layer. In other words, we
do not change the system’s source code to implement
constraints, which would represent an integrated
approach. A layered approach has both advantages and
disadvantages, but it also imposes certain
implementation issues, as we show below.

To demonstrate integrity constraint implementation
in a Neo4j graph database (in this case we used Neo4j
Community Edition v2.3.5), a web application has
been built first by using Spark, a Java lightweight web
framework. After that, we had to select an approach to
access the Neo4j database in order to execute Gremlin
queries. This is where we encountered some issues,
which we will discuss in detail later on.

Approaches to access Neo4j graph databases can be
grouped into two categories:
1. Using Neo4j plugins; or
2. Using different Java APIs, drivers and native Java

implementations

4.1 Neo4j plugins
This approach includes downloading an archived file
from the plugin website, which contains the plugin
code, configuring the Neo4j Server and deploying
(registering) the downloaded plugin onto the server.
In this approach, two options were tested:
• Neo4j Gremlin plugin [Aurelius, 2016], developed

and maintained by Aurelius; and
• Neo4j Server plugin, open source Neo4j

distribution available on Github.
In both cases, we received error messages when

trying to compile plugin code through Maven (a project
management tool for Java projects), so this approach
was not very effective because we did not manage to
successfully connect to the database. Also, these
plugins are script-based, which means they are
supposed to execute Gremlin scripts on the server,
which is not the functionality we were looking for.

4.2 Java APIs, drivers and native
implementations

This approach requires less manual work from the
developer, but it has many variations and API versions,
so a significant effort needs to be made to find the best
API while considering different vendors and API
version compatibility.

3 https://github.com/tinkerpop/gremlin/wiki

More options were tested in this approach,
which are discussed in the following subsections.

4.2.1 Tinkerpop Gremlin v2.6.0

As indicated on the official API website3, this API

represents an outdated version of the Tinkerpop
framework (Tinkerpop 3 is the currently used version).
Tinkerpop4 is a graph computing framework licensed
under Apache, which can be used for both graph
databases and graph analytic systems.

The API can be used in both Java and Groovy
implementations, but the documentation is mainly
written for Groovy, so it has not been very helpful in
our test case. The API was included into the project as
a Maven dependency with the following syntax:

<dependency>
 <groupId>com.tinkerpop.gremlin</groupId>
 <artifactId>gremlin-*</artifactId>
 <version>2.6.0</version>
</dependency>

Unfortunately, as shown in Fig. 3, no such
dependency could be found in the central Maven
repository, so we gave up this option.

Figure 3. Error message when importing Maven

dependency

4.2.2 Tinkerpop Gremlin Java
implementation

Like the previous option, this API also hosts an
outdated version of the Tinkerpop framework and
Gremlin language documentation [Tinkerpop, 2016].
This is why it is possible to only create a TinkerGraph,
which is a reference to a Blueprints graph, the generic
graph API contained in the Tinkerpop2 version of the
framework.

This API was included in the project as a
Maven dependency using the following syntax:
<dependency>
 <groupId>com.tinkerpop.gremlin</groupId>
 <artifactId>gremlin-java</artifactId>
 <version>2.7.0-SNAPSHOT</version>
</dependency>

After successfully importing the dependency, we
were able to successfully connect to the database by
using the following code:

Graph g = TinkerGraphFactory.createTinkerGraph();

4 http://tinkerpop.apache.org/

Central European Conference on Information and Intelligent Systems__Page 26 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

Note that the TinkerGraph default graph structure
contains some predefined vertices and edges, but it is
possible to add new and custom vertices and edges.

The API provides two ways to execute Gremlin
queries:
• Using the GremlinPipeline chaining/combinator

approach, which represents a simple way of
defining Gremlin-style graph traversals; and

• Directly by using two available classes
(GremlinGroovyScriptEngine and
GremlinGroovyScriptEngineFactory), which are
useful when using the Gremlin virtual machine
from within Java applications.
In our case, we tested the first, GremlinPipeline,

approach and managed to successfully create a new
vertex in the database by executing the following code
snippet:

GremlinPipeline pipe = new GremlinPipeline();
Vertex v = db.addVertex(null);
v.setProperty("Label", u.getLabel());
v.setProperty("Firstname", u.getFirstname());
v.setProperty("Lastname", u.getLastname());

pipe.start(db.addVertex(v));

The result of this code is a new node with three

properties, which has been added to the TinkerGraph
(Fig. 4).

Figure 4. List of properties of the newly created node

However, even though this option has proven to be
successful when it comes to connecting to the database
and executing Gremlin queries, it did not allow us to
create a Neo4jGraph, which is what we needed in our
case. Therefore, since TinkerGraph is an in-memory
graph (the database is not saved in a permanent file on
a disk), when using this option, we were not able to
visualize the results of the executed queries, so we also
gave up this option.

4.2.3 Tinkerpop Gremlin v3.0.1-
INCUBATING

The third version of Tinkerpop, graph computing
framework, includes some changes compared to
Tinkerpop2. Various Tinkerpop projects (Blueprints

5 http://tinkerpop.apache.org/docs/3.1.0-
incubating/#_tinkerpop3

for graph model structure definition, Pipes for graph
traversal, Frames for traversal, Furnace for vertex
computing and Rexster as a Gremlin server) have been
merged to a general term called Gremlin5 [Tinkerpop,
2015]. Also, some syntax changes were made in terms
of writing Gremlin queries, i.e., the traditional Java
getters and setters have been replaced by Gremlin-
Groovy syntax, which is a special Gremlin language
variant.
The framework is composed of two parts:
• Components for graph structure definition, such as

Graph, Element (Vertex and Edge) and Property
interfaces and classes; and

• Components for traversal process definition, such
as TraversalSource and GraphComputer interfaces
and classes.
In this version, a new graph traversal concept

called Traverser has been introduced. Traverser
enables the steps in the graph traversal process to
remain stateless, but it also keeps track of the entire
traversal metadata.

This API was included in our project as a Maven
dependency by using the following syntax:

<dependency>
 <groupId>org.apache.tinkerpop</groupId>
 <artifactId>gremlin-core</artifactId>
 <version>3.1.0-incubating</version>
</dependency>

Like in the previous option, this API supports only

the in-memory TinkerGraph, which can be created by
executing the following code:

Graph graph = TinkerGraph.open();

After creating the graph, the API provides methods

for creating vertices and edges:

Vertex marko = graph.addVertex(T.label, "person",
T.id, 1, "name", "marko", "age", 29);
Vertex vadas = graph.addVertex(T.label, "person",
T.id, 2, "name", "vadas", "age", 27);

marko.addEdge("knows", vadas, T.id, 7,
"weight", 0.5f);

When testing this option, we stumbled upon an
issue when trying to create the TinkerGraph according
to the official API documentation - the compiled
dependency did not contain the TinkerGraph class, so
it was not possible to use this API properly.

4.2.4 Tinkerpop Neo4j-Gremlin
This module6 was developed under the Apache2
license and references only the Neo4j API without its
implementation, so the implementation API needs to
be added as a separate dependency [Tinkerpop, 2015].
Also, this module does not include the Gremlin
Console or Gremlin Server.

6 http://tinkerpop.apache.org/docs/3.1.0-
incubating/#neo4j-gremlin

Central European Conference on Information and Intelligent Systems__Page 27 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

We included this module in our project as a
Maven dependency by using the following syntax:

<dependency>
 <groupId>org.apache.tinkerpop</groupId>
 <artifactId>neo4j-gremlin</artifactId>
 <version>3.1.0-incubating</version>
</dependency>

// Neo4j implementation API
<dependency>
 <groupId>org.neo4j</groupId>
 <artifactId>neo4j-tinkerpop-api-mpl</artifactId>
 <version>0.1-2.2</version>
</dependency>

Unlike previously mentioned APIs, this module

supports the Neo4jGraph, which can be created by
calling the open() method implemented in the
Neo4jGraph class. The method receives the Neo4j
database directory path as an argument.

Graph graph = Neo4jGraph.open('/tmp/neo4j')

After successfully connecting to the database, we
managed to add a vertex to the database by executing
the following code snippet:

Vertex v = db.addVertex(u.getLabel());
v.property("Label", u.getLabel());
v.property("Firstname", u.getFirstname());
v.property("Lastname", u.getLastname());

One of the advantages of this option is the
possibility of using the Neo4j web interface, which
provides us with an overview of the current database
structure, as shown in Figure 5.

Figure 5. Overview of created nodes in the database

After creating vertices and edges, the graph

database can be traversed by calling the traversal()
method contained in the graph object:

g = graph.traversal()
g.V().hasLabel('User').values('Firstname')

This option has proved to be successful in terms of
both functionality (we were able to access the Neo4j
database and execute Gremlin queries) and graph
database visualization (we can see all changes made in
the Neo4j web interface).

4.2.5 Tinkerpop Gremlin driver for Java

7 http://tinkerpop.apache.org/docs/3.1.0-
incubating/#_connecting_via_java

This driver7 represents a reference client for Java-
based applications, which enables applications to send
requests to a Gremlin Server and receive results
[Tinkerpop, 2015].

We included this driver in our project as a Maven
dependency by using the following syntax:

<dependency>
 <groupId>org.apache.tinkerpop</groupId>
 <artifactId>gremlin-driver</artifactId>
 <version>3.1.0-incubating</version>
</dependency>

In order to connect to the database and send
Gremlin queries to the Gremlin Server, it is necessary
to open a new reference to localhost and create a new
client, that will be responsible for sending
queries/requests and receiving the results. By
executing the following code, a new Client instance is
created:

Cluster cluster = Cluster.open();
Client client = cluster.connect();

After executing this code, we received an error
message (RuntimeException). As a result, we were not
able to successfully connect to the database, so we gave
up this option.

4.2.6 Neo4j Java driver
Neo4j Java driver8 is the official driver supported by
Neo4j [Neo Technology, Inc., 2016B]. The driver
enables users to connect to a Neo4j graph database by
using the standard Neo4j binary protocol - Bolt.

The driver was included in our project as a Maven
dependency by using the following syntax:

<dependency>
 <groupId>org.neo4j.driver</groupId>
 <artifactId>neo4j-java-driver</artifactId>
 <version>1.0.3</version>
</dependency>

The connection to the database is then established
by creating a new session in the Driver instance:

Driver driver = GraphDatabase.driver(
"bolt://localhost", AuthTokens.basic(
"neo4j", "neo4j"));
Session session = driver.session();

After creating the session, all queries were executed

within that session by calling the run() method and
passing the Cypher query as an argument:

session.run("CREATE(u:User

{Firstname:'Ivan',Lastname:'Horvat'})");

However, in our test case we received an error

message when trying to connect to the database, as
shown in Fig. 6.

8 https://neo4j.com/developer/java/

Central European Conference on Information and Intelligent Systems__Page 28 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

Figure 6. Error message when trying to connect to

Neo4j database using Gremlin driver

We were not able to connect to the Neo4j database
because of some security issues (probably because we
were trying to connect to an HTTPS graph database
server, instead of plain HTTP). This issue required
some time and effort (changing server and project
configurations), but we still were unable to resolve this
issue.

Also, Neo4j Java driver does not provide support
for executing Gremlin queries, which is necessary for
our research goals, so we gave up this option.

4.2.7 Java Core API
The Java Core API can be used in combination with
Traversal API to interact with the Neo4j graph
database [Haines, 2015].

Before using this API, we must include the
appropriate Neo4j dependency version through Maven:

<dependency>
 <groupId>org.neo4j</groupId>
 <artifactId>neo4j</artifactId>
 <version>2.3.5 </version>
</dependency>

The primary interface for that is the
GraphDatabaseService, which contains methods for
creating and querying nodes and relationships in the
database.

In this case, an embedded Neo4j database was used,
but creating a new database using
GraphDatabaseFactory allows us to specify the path
where all database files will be stored:

GraphDatabaseService graphDB = new

GraphDatabaseFactory().newEmbeddedDatabase("p
ath/to/database/files");

After successfully connecting to the Neo4j

database, we can call various methods for creating and
querying nodes and relationships in the database. Note
that all database operations are executed within a
transaction:

try(Transaction t = db.beginTx()){
 Node node =
db.createNode(NodeController.Labels.USER);
 node.setProperty("Label", u.getLabel());
 node.setProperty("Firstname",
u.getFirstname());
 node.setProperty("Lastname",
u.getLastname());
 ResourceIterator<Node> vertices =
db.findNodes(NodeController.Labels.USER);

 while(vertices.hasNext()){
 Node user = vertices.next();
 System.err.println("\nUser: " +
user.getProperty("Firstname") + " " +
user.getProperty("Lastname") + "\n");
 }
 t.success();
}

By executing this code snippet it is possible to
create new nodes in the database (specifically, nodes
labelled User) and to retrieve all users from the
database, as shown in Fig. 7.

Figure 7. Result of creating two nodes using Java

Core API

Since this option supports interaction with the

Neo4j graph database, the results of all operations can
be viewed through the Neo4j web interface.

However, even though we successfully tested this
option and it met our requirements, some methods we
used are deprecated (e.g. newEmbeddedDatabase() for
creating a new database instance), and the queries are
executed through the Cypher query language, so we
gave up this option.

After testing all given options, we decided to use

Tinkerpop’s Neo4j-Gremlin API combined with its
Gremlin Java implementation for our research
purposes. At this time we have managed to implement
the UNIQUE integrity constraint in Gremlin. Even
though that constraint is currently functional, it
requires some additional testing, so the details
regarding integrity constraints implementation will be
discussed and published in future research papers.

5 Conclusion

Integrity constraints are very important in databases as
they prevent bad data from being entered and stored
into a database. However, graph databases do not
support all the constraints that we use in relational
databases. Because of that, we examined different
types of constraints in Gremlin. As it turned out,
support for various constraints in graph databases was
minimal.

Then, we decided to implement several new
constraint types in a graph database, but
implementation issues occurred, as demonstrated
above.

In the end, we successfully connected to the graph
database and we implemented an additional layer that
supported one new constraint type that was still not
supported in graph databases. In our future papers, we
plan to present how we implemented the UNIQUE
constraint and to implement new constraint types as
well.

Central European Conference on Information and Intelligent Systems__Page 29 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

References

Angles, R. (2012). A Comparison of Current Graph
Database Models. Proceedings of the 28th IEEE
International Conference on Data Engeneering
Workshops (ICDEW) (pp. 171-178). The Institute
of Electrical and Electronics Engineers, Inc.

Angles, R., Gutierrez, C. (2008). Survey of Graph
Database Models. ACM Computing Surveys,
40(1).

Aurelius (2016). Neo4j-gremlin-plugin. Retrieved
17.07.2016. from
https://github.com/thinkaurelius/neo4j-gremlin-
plugin

Codd, E.F. (1980). Data models in database
management. Proceedings of the 1980 Workshop
on Data abstraction, Databases and Conceptual
Modeling (pp. 112-114). ACM Press

Cheng, J., Ke, Y., Ng, W. (2008). Efficient Query
Processing on Graph Databases. ACM
Transactions on Database Systems, 34(1), pp 1-
44.

Decker, H., Martinenghi, D. (2009). Database
Integrity Checking. IGI Global.

Eifrem, E., Rathle, P. (2013). The most important part
of Facebook Graph Search is “Graph”. Retrieved
17.7.2016. from https://neo4j.com/blog/why-the-
most-important-part-of-facebook-graph-search-is-
graph/

Gremlin Plugin (2015). Retrieved 17.07.2016. from
https://github.com/neo4j-contrib/gremlin-plugin

Haines, S. (2015). Programming Neo4j with Java.
Retrieved 17.7.2016. from

http://www.informit.com/articles/article.aspx?p=2
415371.

Ibrahim, H. (2010). Integrity Constraints Checking in
a Distributed Database. IGI Global.

Neo Technology, Inc. (2016A). Cypher Query
Language – About Cypher. Retrieved 17.7.2016.
from https://neo4j.com/developer/cypher-query-
language/#_about_cypher

Neo Technology, Inc. (2016B). Neo4j Java driver.
Retrieved 17.07.2016. from
https://neo4j.com/developer/java/.

The PostgreSQL Global Development Group (2016).
PostgreSQL 9.6beta2 Documentation. Retrieved
17.07.2016. from
https://www.postgresql.org/docs/9.6/static/index.h
html

Robinson, I., Webber, J., Eifrem, E. (2013). Graph
Databases. Sebastopol, USA: O’Reilly Media.

Tinkerpop – Apache Software Foundation (2015).
TinkerPop3 Documentation. Retrieved 17.7.2016.
from http://tinkerpop.apache.org/docs/3.1.0-
incubating/

Tinkerpop - Apache Software Foundation (2016).
Using Gremlin through Java. Retrieved
17.7.2016. from
https://github.com/tinkerpop/gremlin/wiki/Using-
Gremlin-through-Java.

Titan by Aurelius (2016). Chapter 6. Gremlin Query
Language. Retrieved 17.7.2016. from
http://s3.thinkaurelius.com/docs/titan/0.5.4/gremli
n.html

Central European Conference on Information and Intelligent Systems__Page 30 of 250

Varaždin, Croatia
__

Faculty of Organization and Informatics

September 21-23, 2016

