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Abstract. A graph is an abstraction for modeling 
relationships between things. Different types of graph 
can be used to model real networks, depending on their 
characteristics. Main goal of this paper is to analyze 
performances of one of the most widely applied 
algorithms for clusterization of graphs, Girvan – 
Newman algorithm, on different types of randomly 
generated graphs in order to see what type of graph is 
the most appropriate to use in real world example. 
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1 Introduction 

Nowadays much information can be gained by 
analyzing data derived from social networks. One of 
growing challenges in this field is identifying of 
“communities” within social networks, which means 
identifying subsets or clusters containing the nodes 
(people or other entities that form the network) with 
unusually strong or numerous connections. 

Social networks are naturally modeled as graphs, 
where entities are represented as nodes, and relations 
are represented as edges between nodes. Different type 
of graphs can be used to model real social network, 
depending on the network’s characteristics. 

Girvan–Newman algorithm (GN) is well known, 
efficient and one of the most widely applied algorithms 
for clusterization in social networks. Main goal of this 
paper is to analyze GN performances on different types 
of graphs (undirected, cyclic directed and acyclic 
directed) with different number of nodes, in order to 
determine which type of graph is the most suitable for 
clustering using this algorithm. Graphs that were used 
in this experiments are randomly generated, because 
random models are commonly used to reproduce the 
properties of real networks in order to analyze their 
behavior. 

In chapter Graphs authors give brief description of 
graph theory and different types of graphs. Chapter 
Representation of social networks as graphs explains 
similarity between social networks and graphs, GN 
clustering algorithm and most important parameters of 
social networks that will be analyzed. Chapter 
Methodology contains description of used tools, 
technologies and algorithms. Achieved results are 
presented in chapter Results. In chapter Conclusion 
authors give their view of the analysis and propose 
future work on this topic. 

2 Graphs 

A graph is an abstraction for modeling relationships 
between things (Lafore, 2002). It often serves as visual 
and computer-friendly representation of real world 
data, and eases finding connections, groups, 
similarities etc. A graph consists of vertices or nodes, 
that represent real world objects, people, systems or 
parts of a system, and edges that connect those nodes, 
serving to show connection or relationship between 
nodes. A node can have zero or more edges, connecting 
it to the same number of other nodes, and that number 
is known as node degree.  

A sequence of edges, leading from one node to 
another, is a path. A graph is considered connected if 
there is a path from any node to any other node, and 
thus the graph is comprised of a single connected 
component. There is also possibility that the graph is 
not connected, i.e. that it comprises of multiple 
connected components, lacking edges between them. 

Based on the type of edges in a graph, there are two 
graph types: 

• Undirected, where the edges of the graph do 
not have a direction; one can go either way on 
them; 
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• Directed, where the edges have direction 
determined; one can go only from node A to 
node B, not vice versa. 

A cycle is a path that ends with the same node it 
began with. Directed graphs occur in two variations, in 
regard of cycles:  

• Cyclic, that have at least one cycle in them. 
further in this paper they will be referred to as 
simply “directed”; 

• Acyclic, that have no cycles whatsoever. 
Graphs can represent real data, as mentioned 

earlier, or can be generated via certain algorithms using 
mathematical rules. One type of generated graphs is 
random graphs. A random graph consists of N nodes 
where each node pair is connected with probability p. 
(Ljucović et al., 2016) 

To construct a random graph, these steps are 
followed: 

• Start with N isolated nodes; 
• Select a node pair and generate a random 

number between 0 and 1. If the number 
exceeds p, connect the selected node pair with 
an edge, otherwise leave them disconnected; 

• Repeat second step for each of the N(N-1)/2 
node pairs. 

The graph obtained after this procedure is called a 
random graph or a random network. Two 
mathematicians, Pál Erdős and Alfréd Rényi, have 
played an important role in understanding the 
properties of these networks. In their honor a random 
network is called the Erdős-Rényi network (Erdős & 
Rényi, 1959). 

The examples of all three types of graphs, 
generated randomly, are shown on fig. 1, fig. 2 and fig. 
3. All graphs were generated with parameters N=15 
and p=0.2. 

 
Figure 1. Undirected graph 

 

 
Figure 2. Directed graph, with one of the cycles 

marked 1-4 

 

 
Figure 3. Directed graph, acyclic 

3 Representation of social networks 
as graphs 

From modeling aspect, social networks are simple to 
create – they consist of entities and relations between 
entities only. Thus, they can be easily modeled as 
graphs, where entities would be represented as nodes 
and relations by edges between nodes. However, the 
challenge is to construct a model that represents the 
real system, i.e. the real social network, in the best way. 
In that sense, philosophy of random networks is 
simple: the assumption is that the best representation 
of the real system is generated by randomly connecting 
any pair of nodes, so random graphs are useful in 
modeling social networks. 

Other similarity between social networks and 
graphs is that social networks can be roughly divided 
into two types, that correspond to types of graphs 
mentioned earlier: directed and undirected. In directed 
networks existing edge from one node to another does 
not necessarily imply reciprocity, e.g. email networks: 
one email sent from an address – node to another 
creates a directed edge; social network twitter that has 
“follow” option, etc. In undirected networks existing 
edge marks bidirectional connection between nodes, 
e.g. in collaboration network where entities are authors 
of scientific papers, edges represent collaboration 
between those authors and point to existence of at least 
one joint paper; social network Facebook with its 
“friend” option, etc. 

One feature that occurs prominently in social 
networks is clusterization. This means that there are 
more or less disjoint groups of nodes – clusters – that 
are more connected between themselves than with 
other nodes. In real world, this would mean that objects 
whose nodes fall within the same cluster are more 
likely to share some common features or have 
similarities in other way. Clusters are not necessarily 
recognized at the first sight, so clustering algorithms 
are used in order to identify them. One of the best 
known clustering algorithms in social networks is 
Girvan-Newman. (Girvan & Newman, 2002) 
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3.1 Girvan-Newman algorithm 
The best-known algorithm for finding clusters, or in 
social networks terms – communities, in social 
networks that uses divisive hierarchical clustering is 
Girvan-Newman (further: GN) algorithm (Girvan & 
Newman, 2002). It is one of the most widely applied 
algorithms for social network graph clustering, based 
on detection of edges that are least likely to fall within 
the same cluster. To that purpose, the graph edge is 
denoted a new parameter – “betweenness”. GN detects 
clusters by progressively removing edges from the 
original network. The connected components 
(Leskovec et al., 2007) of the remaining graph 
represent the resulting clusters. Connected component 
of a graph is a subgraph in which any two nodes are 
connected to each other by paths, and which is 
connected to no additional nodes in the supergraph. 

Instead of trying to construct a measure that tells us 
which edges are the most central to cluster, GN focuses 
on edges that are most likely "between" clusters. In that 
purpose, GN is divided into two main phases - in the 
first phase it calculates betweenness for every edge in 
graph and in second phase it uses that betweenness to 
cluster the graph. 

Betweenness of an edge (a, b) is the number of pairs 
of nodes x and y, such that the edge (a, b) lies on the 
shortest path between x and y. To be more precise, 
since there can be several shortest paths between x and 
y, edge (a, b) is credited with the fraction of those 
shortest paths that include the edge (a, b). The bigger 
the number, it suggests that the edge (a, b) runs 
between two different clusters; that is, a and b do not 
belong to the same cluster (Girvan & Newman, 2002).  

Finally, GN clusters the graph using the calculated 
betweenness. It starts by removing the edges from the 
graph in order of decreasing betweenness: it begins 
with the graph and all its edges, then removes edges 
with the highest betweenness, as many times as it is 
needed, until the graph has broken into a suitable 
number of connected components. 

3.2 Parameters of social networks 
Real social networks can be described using four 
properties: (Maimon & Rokach, 2010) 

• Node degree distribution, that shows number 
of edges between particular nodes; 

• Growth of the big component, which is 
significant from aspect of determining 
whether the network is in critical, 
supercritical or connected regime; 

• Clusterization coefficient, which shows 
relations between neighbors of a node (how 
much are they connected); 

• Average length of shortest path between two 
nodes. 

A. Node degree distribution 
On random networks shown on fig. 1, it can be seen 
that some nodes have a lot of edges, while some have 
only a few or don’t have any connected edge. These 
differences in node degree are caused by probability p 
that affects the occurrence of an edge between two 
nodes in a random network. Probability that a node has 
exactly k edges, i.e. that it has a degree of 〈k〉, for a 
random network with parameters (N, p) can be 
obtained by binomial distribution equation: 

𝑝𝑝𝑘𝑘 = �
𝑁𝑁 − 1

𝑘𝑘
� 𝑝𝑝𝑘𝑘(1 − 𝑝𝑝)𝑁𝑁−1−𝑘𝑘 . (1) 

Most of the real networks are sparse, which implies 
〈k〉≪N. With this condition, node degree distribution 
from equation (1) can be well approximated by 
Poisson’s distribution: 

𝑝𝑝𝑘𝑘 = 𝑒𝑒−〈𝑘𝑘〉 〈𝑘𝑘〉𝑘𝑘

𝑘𝑘!
 . (2) 

Poisson’s and binomial distribution describe the 
same distribution type and have the same properties, 
but are represented in different parameters. Finally, in 
random social model, it is expected that every 
individual has approximately the same number of 
acquaintances, which presumes exclusion of 
exceptions: there are no individuals that are extremely 
popular, having much more than average number of 
acquaintances, nor those that are left out of society. 
This leads to conclusion that in random model the 
degree of each node is in close proximity of 〈k〉, which 
does not coincide with reality. In random networks 
most of the nodes have similar degree and the existence 
of hubs, i.e. nodes with large number of edges, is 
excluded. On the contrary, in real networks there can 
be seen large discrepancy from average node degree in 
actual nodes, and definite existence of hubs. 

B. Growth of the big component 
Interesting characteristic of real social networks is 
existence of the big component. In real social networks 
a cluster that stands out from other clusters in its size 
can be observed. For a big component to exist as such, 
each node that it contains must be connected to at least 
another one that is member of the big component.  

For small random networks p has to be large for a 
big component to exist, while in larger networks 
smaller p is required in order to cross the threshold of 
the big component existence, i.e. for network to reach 
its critical point (equation (3)). 

𝑝𝑝𝑐𝑐 =
1

𝑁𝑁 − 1
≈

1
𝑁𝑁

 (3) 

C. Clusterization coefficient 
Knowing the node degree does not reveal any 
information on connections between its neighbors, 
whether they are directly connected or not. Answer to 
this question is given by local clusterization coefficient 
Ci, which measures the density of edges between direct 
neighbors of node i (nodes that i is connected to via 
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single edge, also noted as nodes on distance 1 from i). 
If Ci = 0, then direct neighbors of node i do not share 
any edge. However, if Ci = 1, then every direct 
neighbor of node i is connected to all other direct 
neighbors. Local clusterization coefficient in random 
networks is given as: 

𝐶𝐶𝑖𝑖 = 𝑝𝑝 =
〈𝑘𝑘〉
𝑁𝑁

 . (4) 

In order to test the value of equation (4), in his 
paper “Network Science” Barabási showed 
comparative analysis of expected and real value of Ci 
in real social networks (Barabasi, 2016). During the 
research he concluded that clusterization coefficient 
does not shrink proportionally to 1/N, but still is largely 
dependent of N. Finally, he concluded that 
clusterization coefficient of random networks does not 
coincide with clustering coefficient of real networks, 
but real networks have much larger clusterization 
coefficient than expected. 

D. Average shortest path length 
Small world phenomenon, also known as “six degrees 
of separation”, has significant role in network science. 
The phenomenon states that if one observes any two 
people in the world, there exists a path between them 
that consists of no more than six different persons, 
where one is acquainted to the next. In network science 
sense the phenomenon indicates that the path between 
any two nodes is short. Two questions arise from that 
statement: what does it mean “short” path (short in 
comparison to what?) and how to explain the existence 
of those short paths.  

Both questions can be answered by observing quite 
simple calculation. A random network with average 
node degree 〈k〉 is observed. An arbitrary node in such 
network has: 〈k〉 neighbors on distance 1 (d = 1), 〈k〉2 
neighbors on d = 2, … 〈k〉d neighbors on distance d. 
More precisely, expected number of nodes on all 
distances up to and including d, from an arbitrary node 
is: 

𝑁𝑁(𝑑𝑑) = �〈𝑘𝑘〉𝑖𝑖
𝑑𝑑

𝑖𝑖=0

=
〈𝑘𝑘〉𝑑𝑑+1 − 1

〈𝑘𝑘〉 − 1
 , (5) 

from which, under assumption that 〈k〉≫1, it can be 
derived that:  

〈𝑑𝑑〉 =
ln 𝑁𝑁
ln〈𝑘𝑘〉 . (6) 

When equation (6) is applied on real social 
network, it produces 〈d〉 = 3.28. Therefore, it is 
considered that all people in the world are separated by 
three to four “handshakes”, i.e. any person can be 
reached by three to four steps following relations 
“friend of a friend”, starting with one’s own friends. 

4 Methodology 

In this paper authors will analyze behavior and 
performance of Girvan-Newman on different types of 
graphs (undirected, cyclic directed and acyclic 
directed), created randomly, with different number of 
nodes N and constant probability p. 

Dataset used for this research is created by Java 
application for creating random graphs, using JUNG 
framework (O’Madadhain, 2016). The following 
parameters are input into the application: number of 
nodes N, probability p and desired graph type. 
Afterwards, the application generates a random graph 
with given parameters. 

However, each time a random network is 
generated, in spite of using same values for N and p, 
the network will look quite differently and will have at 
least slightly different properties (as shown on fig. 4). 
Considering that fact, in order to get more precise 
results and make them relevant for analysis, authors 
generated random networks for each value of N 15 
times. In the paper authors will present the average 
values of tested parameters for each value of N. 

 
Figure 4. Randomly generated graphs with N = 15 

and p = 0.2 

 
The probability authors used in all generated graphs 

for this research is 0.02, because it best corresponds to 
probability found in real social networks. (Ljucović et 
al., 2016) The number of nodes that the graphs were 
generated with is chosen to represent possible number 
of inputs in the real system that this research will be 
used for (LAMS, 2015), and is: 500, 1000 and 1500. 

In order to visualize and analyze the graphs authors 
used Gephi. Gephi is leading free, open source 
visualization and exploration software for all kinds of 
graphs and networks. It is written in Java on the 
NetBeans platform, and it is used in a number of 
research projects in academia, journalism, network 
analytics and elsewhere. (Gephi, 2016), (Kuchar, 
2014) 
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Four main properties, described in chapter 3.2, 
were analyzed (node degree, clusterization coefficient, 
big component and shortest path length), as well as: 

• Diameter, which is the longest graph distance 
between any two nodes in the network; 

• Girvan-Newman algorithm minimal 
clustering level, i.e. number of components in 
graph; 

• Number of nodes in big component, if it 
exists. 

All tests were done on a PC with the following 
configuration: Windows 10 Professional, 64-bit, Intel 
Core i5-3317U @1.7GHz, 4 GB of RAM, Samsung 
EVO SSD. 

5 Results  

Properties of random networks are presented as 
average values of properties of 15 networks created for 
each given N. All numbers are rounded to three 
decimal places. 

Tables 1, 2 and 3 show comparison of results that 
were obtained from generated networks with N=500, 
N=1000 and N=1500.  

Table 1. Overview of results for random networks 
with N=500 

Properties Type of graph 
Acyclic Directed Undirected 

Number of 
edges 2516 4934 2551 

Execution 
time of 
betweenness  

10s 17s 13s 

GN 
Execution 
time 

472ms 1157ms 906ms 

Number of 
connected 
components 

1 1 1 

Number of 
nodes in Big 
component 

500 500 500 

Average 
degree 5.032 9.868 5.102 

Average 
clustering 
coefficient 

0.010 0.019 0.022 

Average 
path length  3.392 2.958 2.919 

Diameter in 
average path 
length 

11 5 5 

 

Table 2. Overview of results for random networks 
with N=1000 

Properties Type of graph 
Acyclic Directed Undirected 

Number of 
edges 9857 19961 9894 

Execution 
time of 
betweenness  

17s 32s 39s 

GN 
Execution 
time 

1710ms 6836ms 8769ms 

Number of 
connected 
components 

1 1 1 

Number of 
nodes in Big 
component 

1000 1000 1000 

Average 
degree 9.857 19.961 9.894 

Average 
clustering 
coefficient 

0.010 0.020 0.021 

Average 
path length  3.310 2.641 2.644 

Diameter in 
average path 
length 

13 4 4 

 

Table 3. Overview of results for random networks 
with N=1500 

Properties Type of graph 
Acyclic Directed Undirected 

Number of 
edges 

22525 44793 22515 

Execution 
time of 
betweenness  

28s 153s 157s 

GN 
Execution 
time 

3280ms 23454ms 31090ms 

Number of 
connected 
components 

1 1 1 

Number of 
nodes in Big 
component 

1500 1500 1500 

Average 
degree 

15.107 29.862 15.01 

Average 
clustering 
coefficient 

0.010 0.020 0.020 

Average 
path length  

3.052 2.524 2.517 

Diameter in 
average path 
length 

11 4 4 
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In all three cases of N, generated graphs showed 
expected rise in number of edges, as it is proportional 
to N2. This also had effect on average GN execution 
time: for N=500 it is 0.26ms per edge, for N=1000 – 
0.47ms per edge, for N=1500 – 0.68ms per edge. This 
is noticeable increase in both absolute execution time, 
as can be seen in tables, but also in average, per edge. 
More or less all graphs were completely connected. 

Average degree showed dependency on type of the 
graph and N, but stayed directly proportional to N. All 
other properties did only change slightly, and that can 
be attributed to statistical error. Parameters except for 
execution times showed similarity to those from the 
previous studies (Ljucović et al., 2016). 

It is noticeable that GN execution time, the most 
changing parameter, changes with respect to N, 
number of edges and type of the graph. Undirected 
graphs have largest execution time, except in the case 
with fewest nodes, and show unexpectedly steeply 
rising curve in average execution time per edge – from 
0.35ms in case of N=500 to 1.38ms in case of N=1500, 
while the other graph types show no noticeable change 
in that derived parameter. 

6 Conclusion 

In this paper authors give analysis of performances of 
Girvan-Newman clustering algorithm in different types 
of random graphs and show how those properties 
change with different number of nodes in those graphs. 
Also, authors present methodology and algorithms 
used to obtain analysis data. 

Based on obtained results, it can be concluded that, 
expectedly, GN execution time rises with rising 
number of nodes, but also important observation is 
made regarding undirected graphs. In that case, GN 
execution time rose more expected, which points to 
possible flaw in the algorithm regarding undirected 
graphs with large number of nodes. 

This curiosity arises a challenge in future work to 
find actual cause of that discrepancy, for which it will 
be necessary to test the algorithm on more and larger 
random graphs, and also, if possible, on real social 
networks. 

For future work it is planned to use results and 
application mentioned in this paper as help for 
intelligent system that will be able to predict 
parameters of lightning on the mountain Lovćen for the 
desired time period. System described in this paper 
should help find similarities and group lightings. 
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